7 research outputs found

    Kajian Potensi Energi Arus Laut Sebagai Energi Alternatif Untuk Pembangkit Listrik Di Perarian Selat Lembeh, Sulawesi Utara

    Get PDF
    Kebutuhan akan energi listrik terus mengalami peningkatan dan sumber energi utamanya adalah energi konvensional yang ketersediannya terbatas di alam, untuk itu diperlukan adanya pencarian sumber energi lain yang terbarukan. Selat Lembeh merupakan wilayah perairan sempit yang berada di antara Laut Maluku yang dipengaruhi oleh massa air dari Pasifik dan Laut Sulawesi yang dipengaruhi oleh massa air dari Hindia. Penelitian ini bertujuan untuk mengetahui karakteristik arus laut serta mengetahui potensi arus laut sebagai sumber energi alternatif pembangkit listrik. Pengolahan data terdiri dari analisa data arus dan pasang surut, pemodelan numerik, dan menghitung estimasi rapat daya. Penelitian ini menggunakan metode kuantitatif dan penentuan lokasi dengan sampling area. Berdasarkan hasil penelitian, rapat daya terbesar yang dihasilkan yaitu pada musim barat, sebesar 120,02 kW/m2

    Perturbation in Levels of Eph signaling leads to defective glomeruli-specific positioning of the terminal of the CSDn.

    No full text
    <p>(A-A″, H) Innervation pattern of the axonal terminals of the CSDn (green) in glomeruli VA1l/m, VA1d and DA1 (anti-Brp in red) in control adults is shown (n≥6). (B-B″, H) In <i>Eph</i> null animals, axonal terminals of the CSDn show overall reduction in their AL innervation. This defect is pronounced in glomeruli which normally receive more innervations from the CSDn (VA1d (n = 4, p<0.001), VA1l/m (n = 4, p = 0.127), DA1 (n = 4, p = 0.025), DL3 (n = 4, p = 0.745) and V (n = 4, p<0.001). (C-C″, I) Targeted expression of Eph in the CSDn results in exquisite reversal of the terminal arborization pattern in these glomeruli compared to controls; terminals preferentially target VA1l/m (n = 5, p = 0.002), DA1 (n = 5, p<0.001), DL3 (n = 5, p = 0.003) and avoid glomerulus VA1d (n = 5, p<0.001). (H–I) Quantification of total axonal branch tip number is plotted in a histogram. Asterisks indicate glomeruli with fewer innervations and arrowhead indicates glomerulus with more innervations from the CSDn. A one-way repeated measure ANOVA test was performed to assess significant difference between the genotypes (F = 27.341, P<0.001). All pairwise multiple comparisions were performed using Fisher LSD method. *, p<0.05; **, p<0.01; ***, p<0.0001; n.s. (not significant), p>0.05. Scale bar = 20 µm. (D–G) Glomeruli-specific innervation of axonal terminals is achieved by directed growth of axonal terminals of the CSDn. Terminal arbors of the CSDn in (D–E) control (RN2<i>flp</i>, <i>tub</i>>CD2>Gal4, UAS<i>mCD8GFP</i>/+) and (F–G) <i>Eph</i> mutant animals (RN2<i>flp</i>, <i>tub</i>>CD2>Gal4, UAS<i>mCD8GFP</i>/+; <i>Eph<sup>X652</sup></i>). Developmental profile of the axonal terminals of control CSDn at (D) 50 hAPF and (E) 70 hAPF is shown. (D) At 50 hAPF, very few axonal terminals of the CSDn can be seen extending to region of the AL where VA1l/m, VA1d, DA1 and DL3 are located. (E) Adult-like pattern of glomeruli-specific innervation of axonal terminals is apparent at 70 hAPF where high innervation of VA1d and low innervation of VA1l/m and DA1 by the CSDn terminals is seen. (F) At 50 hAPF, axonal terminals of the CSDn in <i>Eph</i> null mutants can be seen near the region of AL where the above-mentioned four glomeruli are located but (G) fail to innervate these glomeruli even at 70 hAPF. Asterisks indicate glomeruli with fewer innervations and arrowhead indicates glomerulus with more innervations from the CSDn. Scale bar = 20 µm.</p

    CSDn modulates odour-guided behaviour.

    No full text
    <p>The pair of CSDn is specifically labeled by <i>R60FO2</i>Gal4. Targeted expression of GFP using <i>R60FO2</i>Gal4 (<i>R60F02</i>Gal4/+; UAS <i>mCD8GFP</i>/+) shows a pair of neurons with anatomy characteristic of the CSDn and (Ai–Aii) innervations to the antennal lobe (Brp in red; GFP in green). (Aiii–vi) The neurons labeled by <i>R60F02</i> co-express 5-HT (red) indicating it is indeed the CSDn (green; Brp in blue). Asterisks indicate cell body of the CSDn. (B–F) The CSDn modulates olfactory response of adult <i>Drosophila</i> towards CO<sub>2</sub>. (B) Suppression of evoked synaptic transmission by targeted expression of tetanus toxin light chain (TNTG) in the CSDn (<i>R60F02</i>Gal4/+; UAS <i>TNTG</i>/+, n = 10, p = 0.017) leads to an increase in CO<sub>2</sub> avoidance index compared to control animals (<i>R60F02</i>Gal4/+; UAS <i>TNTVIF</i>/+, n = 12). (C) Similar increase in CO<sub>2</sub> sensitivity is observed upon suppression of CSDn excitability by targeted K<sub>ir</sub>2.1 expression (<i>R60F02</i>Gal4/+; UAS <i>K<sub>ir</sub>2.1</i>/+, n = 11, p<0.01 compared to controls) in the CSDn. (D) CSDn function is required in the adults for modulating olfactory behaviour. Adult-specific expression of K<sub>ir</sub>2.1 in the CSDn is achieved by rearing animals (<i>R60F02</i>Gal4/+; UAS <i>K<sub>ir</sub>2.1</i>/+; Tub-<i>Gal80<sup>ts</sup></i>/+) at 18°C throughout development (white bars in D) and then shifting to 29°C after eclosion (black bars in D). Adult-specific suppression of CSDn excitability results in increased CO<sub>2</sub> avoidance (n = 17; p = 0.006). (E) In a reporter line for serotonin receptor 5-HT<sub>1B</sub>Dro (<i>5-HT<sub>1B</sub>Dro</i>-Gal4/+; UAS-<i>2xEGFP</i>/+), a group of local interneurons are labeled (red arrows) along with mushroom bodies (yellow arrowheads). (F) RNAi-mediated knock down of 5-HT<sub>1B</sub>Dro in the 5-HT<sub>1B</sub>Dro expression domain (<i>5-HT<sub>1B</sub>Dro</i>-Gal4/+; UAS-<i>5-HT<sub>1B</sub>DroRNAi</i>/+, n = 11) results in increased CO<sub>2</sub> sensitivity (p<0.05 compared to all control genotypes, n>7). 5-HT<sub>1B</sub>Dro expression outside the mushroom bodies, likely in the AL, may be necessary for CO<sub>2</sub> sensitivity as blocking <i>5-HT<sub>1B</sub>DroRNAi</i> expression in mushroom body neurons (MB-Gal80/+; <i>5-HT<sub>1B</sub>Dro</i>-Gal4/+; UAS-<i>5-HT<sub>1B</sub>DroRNAi</i>/+, n = 14) does not ameliorate increased CO<sub>2</sub> sensitivity (p = 0.12 compared to <i>5-HT<sub>1B</sub>Dro</i>-Gal4/+; UAS-<i>5-HT<sub>1B</sub>DroRNAi</i>/+, n = 11) and animals exhibit increased CO<sub>2</sub> avoidance (p<0.01 compared to all control genotypes, n>7). Significance was assessed by <i>Mann-Whitney</i> test. *, p<0.05; **, p<0.01; ***, p<0.0001; n.s. (not significant), p>0.05.</p

    Glomerular-specific innervation pattern of the CSDn in the AL is regulated by Ephrin.

    No full text
    <p>(A-A″, E) Innervation pattern of the axonal terminals of the CSDn (green) in glomeruli VA1l/m, VA1d and DA1 (anti-Brp in red) in control adults is shown (n>6). Asterisks indicate glomeruli with fewer innervations and arrowhead indicates glomerulus with more innervations from the CSDn. (B-B″, F) In <i>Ephrin<sup>KG09118</sup></i> hypomorphs, increased terminal innervations can be seen to VA1l/m (n = 5, p<0.001), DA1 (n = 5, p<0.001) and DL3 (n = 9, p = 0.018) while innervations in VA1d (n = 5, p = 0.865) and V (n = 4, p = 0.149) are comparable to controls. (D-D″, G) Targeted expression of Ephrin in the CSDn in <i>Ephrin<sup>KG09118</sup></i> hypomorphs restores distribution of axonal terminals in VA1l/m (n = 6, p = 0.99), glomerulus DA1 (n = 6, p = 0.606) and glomerulus DL3 (n = 6, p = 0.992). (C-C″, G) Targeted expression of Ephrin in the CSDn does not change overall distribution pattern of axonal tips in VA1l/m (n = 8, p = 0.241), DA1 (n = 8, p = 0.092233) and DL3 (n = 8, p = 0.910) when compared to controls, however a small decrease in overall branch tip number is observed. (E–G) Quantification of total axonal branch tip number in glomeruli V, VA1l/m, VA1d, DA1 and DL3 is plotted in histograms. A one-way repeated measure ANOVA test was performed to assess significant difference between the genotypes (F = 28.544, P<0.001). All pairwise multiple comparisions were performed using Fisher LSD method.. *, p<0.05; **, p<0.01; ***, p<0.0001; n.s. (not significant), p>0.05. (H–L) Ephrin shows broad expression pattern and it is expressed throughout the developing AL (n>5). APF = After puparium formation. All the images hereafter are oriented as indicated in A′ unless otherwise mentioned. D, dorsal; M, medial. Scale bar = 20 µm. See also <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003452#pgen.1003452.s005" target="_blank">Table S1</a>.</p

    Sensory neurons differentially express Eph, which is capable of initiating repulsive interaction with Ephrin.

    No full text
    <p>(A–D) Eph is strongly enriched in three anteriorly positioned glomeruli: VA1l/m, DA1 and DL3 glomeruli in the developing AL starting from 50 hAPF (n>5). White dots encircle the developing AL. Arrow indicates antennal commissure. (F-F′) Targeted expression of <i>EphRNAi</i> in sensory neurons (<i>Pebbled</i>-Gal4/+; UAS <i>EphRNAi</i>/+) results in strong reduction of Eph expression (red) in the antennal lobe compared to (E-E′) controls (UAS <i>EphRNAi</i>/+). AL is counterstained with phalloidin (green). (G–H) Eph expression is reduced in the AL of animals lacking majority of the OSNs from trichoid and basiconic sensilla. (G) Eph (red) is prominently expressed in select few glomeruli in the AL at 70 hAPF of control animals. (H) <i>amos<sup>1</sup>/Df(2L)M36F-S6</i> animals show drastic reduction in the Eph expression in the AL. (I–J) Targeted expression of Ephrin in PNs prevents their entry in high Eph-expressing glomerulus VA1l/m (arrowhead). (I) In control animals (Gal4-<i>GH146</i>,mCD8::GFP/+; Or47b::rCD2/+), PN arbors (green) innervate glomerulus VA1l/m (red). (J) Very few PN arbors innervate VA1l/m glomerulus (red) when Ephrin is overexpressed in PNs (Gal4-<i>GH146</i>,mCD8::GFP/UAS <i>Ephrin</i>; Or47b::rCD2/+). Scale bar = 20 µm.</p

    Olfactory sensory neuron-derived Eph controls glomerular-specific arborization pattern of the CSDn.

    No full text
    <p>(A) The CSDn is labeled in control (RN2<i>flp</i>, <i>tub</i>>STOP>LexA::VP16, <i>lexAOpCD2GFP</i>) animals (B) which shows distinct glomerular-specific arborization pattern. (C) RNAi-mediated knockdown of Eph in sensory neurons (RN2<i>flp</i>, <i>tub</i>>STOP>LexA::VP16, <i>lexAOpCD2GFP</i>; <i>Pebbled</i>-Gal4>UAS <i>EphRNAi</i>) leads to increased CSDn arborization in glomerulus DA1 and VA1l/m. (D) Histogram shows quantification of the axonal branch tip number of the CSDn in different glomeruli (n = 3). (E–H) Loss or transformation of antenna leads to uniform arborization of the CSDn in the AL. (E and G) In control animals, terminal arbor of the CSDn shows glomeruli-specific differences in innervation pattern with some glomeruli receiving fewer inputs (asterisks in E and G). Trans-allelic combination of <i>wg<sup>1-16</sup></i> and <i>wg<sup>LacZ</sup></i> leads to loss of antenna and (F) Axonal terminals of the CSDn from animals lacking antenna (<i>wg<sup>1-16</sup></i>/<i>wg<sup>LacZ</sup></i>; RN2<i>flp</i>, <i>tub</i>>CD2>Gal4, UAS<i>mCD8GFP</i>/+) uniformly innervate the AL. (H) In animals where antenna is transformed into leg (RN2<i>flp</i>, <i>tub</i>>CD2>Gal4, UAS<i>mCD8GFP</i>/Antp), axonal terminals of the CSDn innervate the AL homogeneously. Scale bar = 20 µm.</p

    Eph function is not required for appropriate targeting of OSNs and uniglomerular PNs.

    No full text
    <p>(A–B) OSN terminals innervating glomerulus VA1l/m appear comparable to (A) controls in (B) <i>Eph</i> null animals. (C–F) α-sNPF (green) labels specific sets of OSN terminals including (C) DA1 and (E) DL3 in the adult antennal lobe of control animals. α-sNPF immunoreactivity appears comparable to controls in the (D) DA1 and (F) DL3 of <i>Eph</i> null mutants. α-Brp (red) labels the neuropil. (G–H) Targeted expression of Eph in the olfactory sensory neurons does not change their overall pattern and OSNs appear comparable to (G) controls. (I–J) Uniglomerular projection neurons appear normal in <i>Eph</i> null animals. (I) Innervation pattern of projection neurons innervating glomeruli VA1d and DA1 in <i>Mz19</i>mCD8::GFP animals is unchanged in (J) in <i>Eph</i> null mutants (<i>Mz19</i>mCD8::GFP; <i>Eph<sup>X652</sup></i>).</p
    corecore