167 research outputs found

    The Lymnaea Cardioexcitatory Peptide (LyCEP) Receptor: A G-Protein–Coupled Receptor for a Novel Member of the RFamide Neuropeptide Family

    Get PDF
    A novel G-protein–coupled receptor (GRL106) resembling neuropeptide Y and tachykinin receptors was cloned from the molluscLymnaea stagnalis. Application of a peptide extract from the Lymnaea brain to Xenopus oocytes expressing GRL106 activated a calcium-dependent chloride channel. Using this response as a bioassay, we purified the ligand for GRL106,Lymnaea cardioexcitatory peptide (LyCEP), an RFamide-type decapeptide (TPHWRPQGRF-NH2) displaying significant similarity to the Achatina cardioexcitatory peptide (ACEP-1) as well as to the recently identified family of mammalian prolactin-releasing peptides. In the Lymnaeabrain, the cells that produce egg-laying hormone are the predominant site of GRL106 gene expression and appear to be innervated by LyCEP-containing fibers. Indeed, LyCEP application transiently hyperpolarizes isolated egg-laying hormone cells. In theLymnaea pericardium, LyCEP-containing fibers end blindly at the pericardial lumen, and the heart is stimulated by LyCEPin vitro. These data confirm that LyCEP is an RFamide ligand for GRL10

    Cosmological parameters from large scale structure - geometric versus shape information

    Full text link
    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\nu presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal LambdaCDM+m_\nu. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck surveyor become available. In the course of our analysis, we introduce a new dewiggling procedure that allows us to extend consistently the use of the SDSS HPS to models with an arbitrary sound horizon at decoupling. All the cases considered here are compatible with the conservative 95%-bounds \sum m_\nu < 1.16 eV, N_eff = 4.8 \pm 2.0.Comment: 18 pages, 4 figures; v2: references added, matches published versio

    Measurement of Circulating 1,25-Dihydroxyvitamin D: Comparison of an Automated Method with a Liquid Chromatography Tandem Mass Spectrometry Method

    Get PDF
    Background. The clinical relevance of circulating 1,25-dihydroxyvitamin D (1,25(OH)2D) is probably underappreciated, but variations in the measurement of this difficult analyte between different methods limit comparison of results. Methods. In 129 clinical samples, we compared a new automated assay with a commercially available liquid chromatography tandem mass spectrometry (LC-MS/MS) kit. Results. Median (interquartile range) 1,25(OH)2D concentrations with the automated assay and the LC-MS/MS method were 26.6 pg/mL (18.5–39.0 pg/mL) and 23.6 pg/mL (16.1–31.3 pg/mL), respectively (P=0.001). Using the method-specific cut-offs for deficient 1,25(OH)2D levels (<20 pg/mL for the automated assay and <17 pg/mL for the LC-MS/MS method), the percentage of patients classified as 1,25(OH)2D deficient was 28.7% and 27.1%, respectively. However, concordance between the two methods for deficient levels was only 62% and the concordance correlation coefficient was poor (0.534). The regression equation resulted in an intercept of −1.99 (95% CI: −7.33–1.31) and a slope of 1.27 (95% CI: 1.04–1.52) for the automated assay. The mean bias with respect to the mean of the two methods was −3.8 (1.96 SD: −28.3–20.8) pg/mL for the LC-MS/MS method minus the automated assay. Conclusions. The two methods show only modest correlation and further standardization is required to improve reliability and comparability of 1,25(OH)2D test procedures

    Multiattribute perceptual mapping with idiosyncratic brand and attribute sets

    Get PDF
    This article proposes an extremely flexible procedure for perceptual mapping based on multiattribute ratings, such that the respondent freely generates sets of both brands and attributes. Therefore, the brands and attributes are known and relevant to each participant. Collecting and analyzing such idiosyncratic datasets can be challenging. Therefore, this study proposes a modification of generalized canonical correlation analysis to support the analysis of the complex data structure. The model results in a common perceptual map with subject-specific and overall fit measures. An experimental study compares the proposed procedure with alternative approaches using predetermined sets of brands and/or attributes. In the proposed procedure, brands are better known, attributes appear more relevant, and the respondent's burden is lower. The positions of brands in the new perceptual map differ from those obtained when using fixed brand sets. Moreover, the new procedure typically yields positioning information on more brands. An empirical study on positioning of shoe stores illustrates our procedure and resulting insights. Finally, the authors discuss limitations, potential application areas, and directions for research

    Survival benefit with checkpoint inhibitors versus chemotherapy is modified by brain metastases in patients with recurrent small cell lung cancer

    Get PDF
    IntroductionSmall cell lung cancer (SCLC) is a rapidly growing malignancy with early distant metastases. Up to 70% will develop brain metastases, and the poor prognosis of these patients has not changed considerably. The potential of checkpoint inhibitors (CPI) in treating recurrent (r/r) SCLC and their effect on brain metastases remain unclear.MethodsIn this retrospective multicenter study, we analyzed r/r SCLC patients receiving second or further-line CPI versus chemotherapy between 2010 and 2020. We applied multivariable-adjusted Cox regression analysis to test for differences in 1-year mortality and real-world progression. We then used interaction analysis to evaluate whether brain metastases (BM) and/or cranial radiotherapy (CRT) modified the effect of CPI versus chemotherapy on overall survival.ResultsAmong 285 patients, 99 (35%) received CPI and 186 (65%) patients received chemotherapy. Most patients (93%) in the CPI group received nivolumab/ipilimumab. Chemotherapy patients were entirely CPI-naïve and only one CPI patient had received atezolizumab for first-line treatment. CPI was associated with a lower risk of 1-year mortality (adjusted Hazard Ratio [HRadj] 0.59, 95% CI 0.42 to 0.82, p=0.002). This benefit was modified by BM and CRT, indicating a pronounced effect in patients without BM (with CRT: HRadj 0.34, p=0.003; no CRT: HRadj 0.50, p=0.05), while there was no effect in patients with BM who received CRT (HRadj 0.85, p=0.59).ConclusionCPI was associated with a lower risk of 1-year mortality compared to chemotherapy. However, the effect on OS was significantly modified by intracranial disease and radiotherapy, suggesting the benefit was driven by patients without BM

    Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging

    Full text link
    The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl
    corecore