4 research outputs found

    Antagonistic effects of transforming growth factor-beta on vitamin D3 enhancement of osteocalcin and osteopontin transcription: reduced interactions of vitamin D receptor/retinoid X receptor complexes with vitamin E response elements

    No full text
    Osteocalcin and osteopontin are noncollagenous proteins secreted by osteoblasts and regulated by a complex interplay of systemic and locally produced factors, including growth factors and steroid hormones. We investigated the mechanism by which transforming growth factor-beta (TGF beta) inhibits 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-enhanced expression of the osteocalcin (OC) and osteopontin (OP) genes. ROS 17/2.8 cells, in which both genes are expressed, were transfected with reporter constructs driven by native (i.e. wild-type) rat OC and mouse OP promoters. TGF beta abrogated the 1,25-(OH)2D3 enhanced transcription of both the OC and OP genes. The inhibitory TGF beta response for each requires vitamin D response element (VDRE) sequences, although there are additional contributions from proximal basal regulatory elements. These transcriptional effects were further investigated for contribution of the trans-activating factors, which interact with OC and OP VDREs, involving the vitamin D receptor (VDR) and retinoid X receptor (RXR). Gel mobility shift assays show that TGF beta significantly reduces induction of the heterodimers VDR/RXR complexes in 1,25-(OH)2D3-treated ROS 17/2.8 cells. However, Western blot and ligand binding analysis reveal that TGF beta does not affect nuclear availability of the VDR. We also show that activator protein-1 activity is up-regulated by TGF beta; thus, activator protein-1 binding sites in the OC promoter may potentially contribute to inhibitory effects of TGF beta on basal transcription. Our studies demonstrate that the inhibitory action of TGF beta on the 1,25-(OH)2D3 enhancement of OC and OP transcription in osteoblastic cells results from modulations of protein-DNA interactions at the OC and OP VDRE, which cannot be accounted for by changes in VDR protein levels. As OC and OP participate in bone turnover, our results provide insight into the contributions of TGF beta and 1,25-(OH)2D3 to VDR-mediated gene regulatory mechanism operative in bone formation and/or resorption events

    Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes

    No full text
    The 1 alpha,25-dihydroxyvitamin D3 (VD3)-dependent stimulation of osteocalcin (OC) and osteopontin (OP) gene transcription in bone tissue is mediated by interactions of trans-activating factors with distinct VD3-responsive elements (VDREs). Sequence variation between the OC- and OP-VDRE steroid hormone half-elements provides the potential for recognition by distinct hormone receptor homo- and heterodimers. However, the exact composition of endogenous VD3- induced complexes recognizing the OC- and OP-VDREs in osteoblasts has not been definitively established. To determine the identity of these complexes, we performed gel shift immunoassays with nuclear proteins from ROS 17/ 2.8 osteoblastic cells using a panel of monoclonal antibodies. We show that VD3- inducible complexes interacting with the OC- and OP-VDREs represent two distinct heterodimeric complexes, each composed of the vitamin D receptor (VDR) and the retinoid X receptor-alpha (RXR). The OC- and OP-VDR/RXR alpha heterodimers are immunoreactive with RXR antibodies and several antibodies directed against the ligand-binding domain of the VDR. However, while the OC-VDRE complex is also efficiently recognized by specific monoclonal antibodies contacting epitopes in or near the VDR DNA-binding domain (DBD) (between amino acids 57-164), the OP-VDRE complex is not efficiently recognized by these antibodies. By systematically introducing a series of point-mutations in the OC-VDRE, we find that two internal nucleotides of the proximal OC-VDRE half-site (nucleotide -449 and -448; 5\u27-AGGACA) determine differences in VDR immunoreactivity. These results are consistent with the well established polarity of RXR heterodimer binding to bipartite hormone response elements, with the VDR recognizing the 3\u27-half-element. Furthermore, our data suggest that the DBD of the VDR adopts different protein conformations when contacting distinct VDREs. Distinctions between the OC- and OP-VDR/RXR alpha complexes may reflect specialized requirements for VD3 regulation of OC and OP gene expression in response to physiological cues mediating osteoblast differentiation
    corecore