182 research outputs found

    Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.

    Get PDF
    BACKGROUND: Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects. METHODOLOGY/PRINCIPAL FINDINGS: Male rat pups received a course of dexamethasone (Dex), or Dex with vitamins C and E (DexCE), on postnatal days 1-6 (P1-6). Controls received vehicle (Ctrl) or vehicle with vitamins (CtrlCE). At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05). Constrictor responses to phenylephrine (PE) and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05); effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05). Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05); however, this effect was not restored in DexCE (68.3+/-8.3, AUC). Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax) and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05). CONCLUSIONS/SIGNIFICANCE: Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function

    Effects of Antenatal Glucocorticoid Therapy on Hippocampal Histology of Preterm Infants

    Get PDF
    Objective: To investigate if antenatal glucocorticoid treatment has an effect on hippocampal histology of the human preterm newborn. Patients and Methods: Included were consecutive neonates with a gestational age between 24 and 32 weeks, who were born between 1991 to 2009, who had died within 4 days after delivery and underwent brain autopsy. Excluded were neonates with congenital malformations and neonates treated postnatally with glucocorticoids. The brains were routinely fixed, samples of the hippocampus were stained with haematoxylin and eosin and sections were examined for presence or absence of large and small neurons in regions of the hippocampus. Additional staining with GFAP, neurofilament and vimentin was performed to evaluate gliosis and myelination. The proliferation marker Ki67 was used to evaluate neuronal proliferation. Staining with acid fuchsin-thionin was performed to evaluate ischemic damage. Results: The hippocampi of ten neonates who had been treated with antenatal glucocorticoids showed a lower density of large neurons (p = 0.01) and neurons irrespective of size (p = 0.02) as compared to eleven neonates who had not been treated with glucocorticoids. No difference was found in density of small neurons, in myelination, gliosis, proliferation or ischemic damage. Conclusion: We found a significantly lower density of neurons in the hippocampus of neonates after antenata

    Maternal-to-fetal allopurinol transfer and xanthine oxidase suppression in the late gestation pregnant rat.

    Get PDF
    Fetal brain hypoxic injury remains a concern in high-risk delivery. There is significant clinical interest in agents that may diminish neuronal damage during birth asphyxia, such as in allopurinol, an inhibitor of the prooxidant enzyme xanthine oxidase. Here, we established in a rodent model the capacity of allopurinol to be taken up by the mother, cross the placenta, rise to therapeutic levels, and suppress xanthine oxidase activity in the fetus. On day 20 of pregnancy, Wistar dams were given 30 or 100 mg kg(-1) allopurinol orally. Maternal and fetal plasma allopurinol and oxypurinol concentrations were measured, and xanthine oxidase activity in the placenta and maternal and fetal tissues determined. There were significant strong positive correlations between maternal and fetal plasma allopurinol (r = 0.97, P < 0.05) and oxypurinol (r = 0.88, P < 0.05) levels. Under baseline conditions, maternal heart (2.18 ± 0.62 mU mg(-1)), maternal liver (0.29 ± 0.08 mU mg(-1)), placenta (1.36 ± 0.42 mU mg(-1)), fetal heart (1.64 ± 0.59 mU mg(-1)), and fetal liver (0.14 ± 0.08 mU mg(-1)) samples all showed significant xanthine oxidase activity. This activity was suppressed in all tissues 2 h after allopurinol administration and remained suppressed 24 h later (P < 0.05), despite allopurinol and oxypurinol levels returning toward baseline. The data establish a mammalian model of xanthine oxidase inhibition in the mother, placenta, and fetus, allowing investigation of the role of xanthine oxidase-derived reactive oxygen species in the maternal, placental, and fetal physiology during healthy and complicated pregnancy

    Maternal Allopurinol Prevents Cardiac Dysfunction in Adult Male Offspring Programmed by Chronic Hypoxia During Pregnancy.

    Get PDF
    Integrating functional and molecular levels, we investigated the effects of maternal treatment with a xanthine oxidase inhibitor on the programming of cardiac dysfunction in adult offspring using an established rat model of hypoxic pregnancy. Female Wistar rats were divided into normoxic or hypoxic (13% O2) pregnancy±maternal allopurinol treatment (30 mg kg-1 d-1). At 4 months, hearts were isolated from 1 male per litter per outcome variable to determine cardiac function and responses to ischemia-reperfusion in a Langendorff preparation. Sympathetic dominance, perfusate CK (creatine kinase) and LDH (lactate dehydrogenase) and the cardiac protein expression of the β1-adrenergic receptor, the M2 Ach receptor (muscarinic type-2 acetylcholine receptor), and the SERCA2a (sarcoplasmic reticulum Ca2+ ATPase 2a) were determined. Relative to controls, offspring from hypoxic pregnancy showed elevated left ventricular end diastolic pressure (+34.7%), enhanced contractility (dP/dtmax, +41.6%), reduced coronary flow rate (-21%) and an impaired recovery to ischemia-reperfusion (left ventricular diastolic pressure, area under the curve recovery -19.1%; all P<0.05). Increased sympathetic reactivity (heart rate, +755.5%; left ventricular diastolic pressure, +418.9%) contributed to the enhanced myocardial contractility ( P<0.05). Perfusate CK (+431%) and LDH (+251.3%) and the cardiac expression of SERCA2a (+71.4%) were also elevated ( P<0.05), further linking molecular markers of cardiac stress and injury to dysfunction. Maternal allopurinol restored all functional and molecular indices of cardiac pathology. The data support a link between xanthine oxidase-derived oxidative stress in hypoxic pregnancy and cardiac dysfunction in the adult offspring, providing a target for early intervention in the developmental programming of heart disease.British Heart Foundatio

    CeRebrUm and CardIac Protection with ALlopurinol in Neonates with Critical Congenital Heart Disease Requiring Cardiac Surgery with Cardiopulmonary Bypass (CRUCIAL):study protocol of a phase III, randomized, quadruple-blinded, placebo-controlled, Dutch multicenter trial

    Get PDF
    BACKGROUND: Neonates with critical congenital heart disease (CCHD) undergoing cardiac surgery with cardiopulmonary bypass (CPB) are at risk of brain injury that may result in adverse neurodevelopment. To date, no therapy is available to improve long-term neurodevelopmental outcomes of CCHD neonates. Allopurinol, a xanthine oxidase inhibitor, prevents the formation of reactive oxygen and nitrogen species, thereby limiting cell damage during reperfusion and reoxygenation to the brain and heart. Animal and neonatal studies suggest that allopurinol reduces hypoxic-ischemic brain injury and is cardioprotective and safe. This trial aims to test the hypothesis that allopurinol administration in CCHD neonates will result in a 20% reduction in moderate to severe ischemic and hemorrhagic brain injury. METHODS: This is a phase III, randomized, quadruple-blinded, placebo-controlled, multicenter trial. Neonates with a prenatal or postnatal CCHD diagnosis requiring cardiac surgery with CPB in the first 4 weeks after birth are eligible to participate. Allopurinol or mannitol-placebo will be administered intravenously in 2 doses early postnatally in neonates diagnosed antenatally and 3 doses perioperatively of 20 mg/kg each in all neonates. The primary outcome is a composite endpoint of moderate/severe ischemic or hemorrhagic brain injury on early postoperative MRI, being too unstable for postoperative MRI, or mortality within 1 month following CPB. A total of 236 patients (n = 188 with prenatal diagnosis) is required to demonstrate a reduction of the primary outcome incidence by 20% in the prenatal group and by 9% in the postnatal group (power 80%; overall type 1 error controlled at 5%, two-sided), including 1 interim analysis at n = 118 (n = 94 with prenatal diagnosis) with the option to stop early for efficacy. Secondary outcomes include preoperative and postoperative brain injury severity, white matter injury volume (MRI), and cardiac function (echocardiography); postnatal and postoperative seizure activity (aEEG) and regional cerebral oxygen saturation (NIRS); neurodevelopment at 3 months (general movements); motor, cognitive, and language development and quality of life at 24 months; and safety and cost-effectiveness of allopurinol. DISCUSSION: This trial will investigate whether allopurinol administered directly after birth and around cardiac surgery reduces moderate/severe ischemic and hemorrhagic brain injury and improves cardiac function and neurodevelopmental outcome in CCHD neonates. TRIAL REGISTRATION: EudraCT 2017-004596-31. Registered on November 14, 2017. ClinicalTrials.gov NCT04217421. Registered on January 3, 2020 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-022-06098-y

    Amnioinfusion Compared With No Intervention in Women With Second-Trimester Rupture of Membranes A Randomized Controlled Trial

    Get PDF
    OBJECTIVE: To assess the effectiveness of amnioinfusion in women with second-trimester preterm prelabor rupture of membranes. METHODS: We performed a nationwide, multicenter, open-label, randomized controlled trial, the PPROM: Expectant Management versus Induction of Labor-III (PPROMEXIL-III) trial, in women with singleton pregnancies and preterm prelabor rupture of membranes at 16 0/7 to 24 0/7 weeks of gestation with oligohydramnios (single deepest pocket less than 20 mm). Participants were allocated to transabdominal amnioinfusion or no intervention in a oneto- one ratio by a web-based system. If the single deepest pocket was less than 20 mm on follow-up visits, amnioinfusion was repeated weekly until 28 0/7 weeks of gestation. The primary outcome was perinatal mortality. We needed 56 women to show a reduction in perinatal mortality from 70% to 35% (b error 0.20, two-sided a error 0.05). RESULTS: Between June 15, 2012, and January 13, 2016, we randomized 28 women to amnioinfusion and 28 to no intervention. One woman was enrolled before the trial registration date (June 19, 2012). Perinatal mortality rates were 18 of 28 (64%) in the amnioinfusion group vs 21 of 28 (75%) in the no intervention group (relative risk 0.86, 95% CI 0.601.22, P5.39). CONCLUSION: In women with second-trimester preterm prelabor rupture of membranes and oligohydramnios, we found no reduction in perinatal mortality after amnioinfusion
    • …
    corecore