64 research outputs found
Hexabromocyclododecane in marine species from the western Scheldt Estuary: diastereoisomer- and enantiomer-specific accumulation
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant, which is increasingly reported in the environment. Here, we report on the diastereomeric and, for the first time, on the enantiomeric composition of HBCD in muscle and liver of several fish species caught in the Western Scheldt Estuary (The Netherlands). The total HBCD content (sum of alfa-, béta- and gamma-diastereoisomers), as well as the distribution of diastereoisomers and enantiomers, varied between the species. The levels of total HBCD (9-1110 ng/g lipid weight) found in fish tissues were higher than those measured in fish from European rivers with no known point sources of HBCD but lower than in fish samples collected near factories producing or using HBCD. The concentrations of total HBCD expressed on a lipid weight basis were higher in liver than in muscle for bib and whiting, while in sole, HBCD had no preferential distribution between the tissues. A similar pattern for liver and muscle distribution was already observed for polybrominated diphenyl ethers (PBDEs) in these species. The alfa-HBCD diastereoisomer was most abundant in all fish samples with a higher contribution to the total HBCD levels in liver compared to muscle for bib and whiting. The gamma-HBCD diastereoisomer accumulated less in liver than in muscle of sole, bib, and whiting. For the first time, enantiomer fractions were determined for HBCD diastereoisomers in liver of three fish species and in muscle of two fish species. A significant enrichment of the (+) alfa-HBCD enantiomer was found in whiting and bib liver samples. A high enantioselectivity has also been seen for the gamma-HBCD diastereoisomer in whiting liver
Chromatographic Properties of Different Methyl—Phenyl (1:1) Substituted Silicone Stationary Phases for Open-Tubular Gas Chromatography
The influence of different configurations of silicones having 50% methyl and 50% phenyl substitution on chromatographic properties, such as polarity and thermal stability, has been systematically investigated. Polysiloxanes composed of dimethyl and diphenyl units show very low levels of column bleed at temperatures up to 370°C, while polymers having methyl—phenyl substitution show severe bleeding at this temperature. The polarity of the latter polymers, as reflected by Kováts indices, is higher than for the polymers composed by dimethyl—diphenyl unit
Recommended from our members
Eclogites in peridotite massifs in the Western Gneiss Region, Scandinavian Caledonides: Petrogenesis and comparison with those in the Variscan Moldanubian Zone
Eclogite lenses and boudins are volumetrically minor, but petrologically important, features of peridotite massifs worldwide. In the Western Gneiss Region of the Scandinavian Caledonides, eclogites in the Almklovdalen and Raubergvik peridotites originated as basaltic to picrobasaltic dikes, comprising both olivine–normative and nepheline–normative types, with a wide variation in Mg–number from 34 to 65. Positive anomalies for Pb and Sr and negative anomalies for Zr and Hf reflect a subduction signature in the basic melts, and rare–earth element modelling requires 20% to 70% fractional crystallization, combined with 20% to 70% assimilation of peridotite. Clinopyroxenes in eclogites have a wide variation in εNd(0) from +68 to −26, which is comparable to that for associated garnet peridotites and pyroxenites, +55 to −38, and a range in 87Sr/86Sr from 0.7021 to 0.7099, which is much larger than that in peridotites and pyroxenites, 0.7014 to 0.7033.
Plagioclase and amphibole inclusions in eclogite garnet provide evidence for prograde metamorphism, which attained a maximum temperature of ~775 °C and pressure of ~25 kb. Such conditions are allofacial with those of associated garnet peridotites and pyroxenites, which equilibrated at ~825 °C and ~37 kb. Eclogites yield mixed Sm-Nd isochron ages, as do the peridotites and pyroxenites, but ages in eclogites are 1000 Ma. Three eclogites yield Ordovician U-Pb ages for rutile at 440 ± 12, 445 ± 51, and 480 ± 29 Ma, which are coeval with the Taconic Orogeny and are consistent with a Laurentian provenance for the host peridotites.
Eclogites in both Norwegian and Czech peridotites originated from melts passing through a mantle wedge above a subduction zone, and both suites exhibit subduction geochemical signatures, although they differ dramatically in petrogenesis. Eclogites in Norwegian peridotites initially crystallized as relatively low–pressure, plagioclase–bearing basaltic or gabbroic dikes and subsequently recrystallized to high–pressure eclogite, whereas most eclogites in Variscan Moldanubian peridotites crystallized directly from magmas at high pressure to produce eclogite facies assemblages
Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks
Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity
Hexabromocyclododecanes (HBCDs) in the environment and humans: A review
Hexabromocyclododecanes (HBCDs) are brominated aliphatic cyclic hydrocarbons used as flame retardants in thermal insulation building materials, upholstery textiles, and electronics. As a result of their widespread use and their physical and chemical properties, HBCDs are now ubiquitous contaminants in the environment and humans. This review summarizes HBCD concentrations in several environmental compartments and analyzes these data in terms of point sources versus diffuse sources, biomagnification potential, stereoisomer profiles, time trends, and global distribution. Generally, higher concentrations were measured in samples (air, sediment, and fish) collected near point sources (plants producing or processing HBCDs), while lower concentrations were recorded in samples from locations with no obvious sources of HBCDs. High concentrations were measured in top predators, such as marine mammals and birds of prey (up to 9600 and 19 200 ng/g lipid weight, respectively), suggesting a biomagnification potential for HBCDs. Relatively low HBCD concentrations were reported in the few human studies conducted to date (median values varied between 0.35 and 1.1 ng/g lipid weight). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. One important observation is the shift from the high percentage of the gamma-HBCD stereoisomer in the technical products to a dominance of the alpha-HBCD stereoisomer in biological samples. A combination of factors such as variations in solubility, partitioning behavior, uptake, and, possibly, selective metabolism of individual isomers may explain the observed changes in stereoisomer patterns. Recommendations for further work include research on how HBCDs are transferred from products into the environment upon production, use, and disposal. Time trends need to be analyzed more in detail, including HBCD stereoisomers, and more data on terrestrial organisms are needed, especially for humans. Whenever possible, HBCDs should be analyzed as individual stereoisomers in order to address their fate and effects
Influence of Plastic Deformation on Nanocrystallization of Finemet Alloy
The Finemet alloy prepared by the crystallization of an amorphous precursor is a basic model material for study of magnetic nanoparticle structures. Intensive plastic deformation localized in adiabatic shear bands causes the intensive heating and structural changes in the amorphous alloy. These changes influence the magnetic properties of the amorphous precursor for the Finemet crystallization
Failure Behaviour of Fe- and Co-Based Amorphous Soft Magnetic Ribbons
Fractographic analysis of Co- and Fe-based high strength soft magnetic materials showed the high localization of the plastic deformation and the ductility in narrow shear bands. The estimated fracture toughness of these materials is closely associated with the scale of the local plastic zone
- …