6,334 research outputs found

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    Locally Non-rigid Registration for Mobile HDR Photography

    Full text link
    Image registration for stack-based HDR photography is challenging. If not properly accounted for, camera motion and scene changes result in artifacts in the composite image. Unfortunately, existing methods to address this problem are either accurate, but too slow for mobile devices, or fast, but prone to failing. We propose a method that fills this void: our approach is extremely fast---under 700ms on a commercial tablet for a pair of 5MP images---and prevents the artifacts that arise from insufficient registration quality

    How input fluctuations reshape the dynamics of a biological switching system

    Get PDF
    An important task in quantitative biology is to understand the role of stochasticity in biochemical regulation. Here, as an extension of our recent work [Phys. Rev. Lett. 107, 148101 (2011)], we study how input fluctuations affect the stochastic dynamics of a simple biological switch. In our model, the on transition rate of the switch is directly regulated by a noisy input signal, which is described as a nonnegative mean-reverting diffusion process. This continuous process can be a good approximation of the discrete birth-death process and is much more analytically tractable. Within this new setup, we apply the Feynman-Kac theorem to investigate the statistical features of the output switching dynamics. Consistent with our previous findings, the input noise is found to effectively suppress the input-dependent transitions. We show analytically that this effect becomes significant when the input signal fluctuates greatly in amplitude and reverts slowly to its mean.Comment: 7 pages, 4 figures, submitted to Physical Review

    A method to extract pure Raman spectrum of epitaxial graphene on SiC

    Full text link
    A method is proposed to extract pure Raman spectrum of epitaxial graphene on SiC by using a Non-negative Matrix Factorization. It overcomes problems of negative spectral intensity and poorly resolved spectra resulting from a simple subtraction of a SiC background from the experimental data. We also show that the method is similar to deconvolution, for spectra composed of multiple sub- micrometer areas, with the advantage that no prior information on the impulse response functions is needed. We have used this property to characterize the Raman laser beam. The method capability in efficient data smoothing is also demonstrated.Comment: 3 figures, regular pape
    • …
    corecore