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In this study, it was investigated to what extent linear auto regressive models with external input (ARX) and
auto regressive moving average models with external input (ARMAX) could be used to describe the inside air
temperature of an unheated, naturally ventilated greenhouse under Western European conditions. Outside air
temperature and relative humidity, global solar radiation, and cloudiness of the sky were used as the input
variables. Firstly, different models were built for the first and middle week of each season. The models were
suitable to describe the greenhouse temperature evolution satisfactorily, except for the ventilation periods,
apparently due to the non-linear effect of ventilation strategies. It was also observed that ARX models
performed better than ARMAX models. None of the input variables could be omitted from models for a
complete year. It was found that the application of a single model structure for a complete year required
frequent retuning. Retuning when the goodness of fit falls below a pre-set threshold, proved to be more
efficient than retuning at fixed time intervals in maintaining high accuracy.
# 2003 Silsoe Research Institute. All rights reserved

Published by Elsevier Science Ltd

1. Introduction

The greenhouse climate is a very complex system in
which the variables highly depend on the outside climate
conditions and on the greenhouse design, while most of
them are inter-dependent through heat and mass
transfer phenomena. Furthermore, the canopy is not a
passive element in the greenhouse microclimate system.
Via several control mechanisms, plants can modify to
some extent the greenhouse climate by changing their
heat, vapour and carbon dioxide exchange rates. In
actively controlled greenhouses, the climate also de-
pends on manually or automatically installed control
strategies. It is clear that the scientific understanding of
the greenhouse climate mechanism has advanced a lot
by the availability of computers that allow to simulate
the climate by means of static and dynamic greenhouse
climate models. Whereas the pioneering works (for
instance, the model of Takakura et al., 1971) were rather
simple by modern standards, the actual deterministic
models allow the greenhouse climate dynamics to be
studied in a detailed way.

Consequently, the calibration and validation of such
models requires many parameters to be determined

experimentally. For most climate control purposes, the
application of such models is rather difficult and time-
consuming, and success is dependent on the accuracy of
some parameters (Udink ten Cate, 1987). Consequently,
in recent decades several black and grey box models
have been developed (Challa, 1981; Tantau, 1985).
Black box models merely describe statistically what
happens with a given input over a limited range (Hanan,
1998). This implies that they are fully based on
empiricism. Grey box models have a structure that is
based partly on physical, chemical or biological laws
(like deterministic models) and partly on empiricism.
Both black and grey box models often show relatively
accurate high-frequency responses, which make them
especially suitable for control purposes (Udink ten Cate,
1987). Some of these models have the advantage that
they do not require explicit evaluation of transfer
coefficients or model formulation, which is, for instance
the case with neural networks. Using this technique,
Seginer et al. (1994) were able to model the greenhouse
climate satisfactorily. Auto regressive methods allow
models to be built using experimentally obtained input–
output relations from the system (i.e. input and output
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values obtained from ‘field’ experiments) using techni-
ques of parameter identification. Applications of this
technique in horticultural engineering include the green-
house climate model of Boaventura et al. (1996) for
Mediterranean climate conditions and the plant
response model of Boonen et al. (2000).

The objective of this study was to investigate the
outside climate variables which must at least be included
in linear auto regressive models simulating the inside air
temperature of greenhouses under Western European
conditions and to what extent the most appropriate
model structure and retuning frequency vary through-
out the year.

2. Theoretical considerations

Although climate characteristics are continuous vari-
ables, they are measured and registered at time steps
which give measured climate data, a discrete character.
In this discrete domain, the dynamic greenhouse system
can be modelled in several ways, one of which is by
means of linear auto regressive relations between the
discrete output yðtÞ and the discrete input uðtÞ, such as
auto regressive models with external input (ARX) and
auto regressive moving average models with external
input (ARMAX). Assuming a single input–single output
system, the following expressions can be used to describe
this relationship (Ljung, 1999):

yðtÞ ¼ � a1yðt � 1Þ � � � � � ana
yðt � naÞ þ b1uðt � 1Þ

þ � � � þ bnb
uðt � nbÞ þ eðtÞ þ c1eðt � 1Þ

þ � � � þ cnc
eðt � ncÞ ð1Þ

where: y(t) is the output signal at (discrete) time t;
u(t�nk) is the input signal at (discrete) time t-nk; eðtÞ is
the perturbation or even any not measurable input in the
system (noise); ana

; bnb
; cnc

are the model parameters;
na; nb; nc indicate the order of the respective polynomials
(output, input, perturbation) and nk is time delay from
input to output.

For ARMAX, Eqn (1) is often represented as

AðzÞyðtÞ ¼ BðzÞuðt � nkÞ þ CðzÞeðtÞ ð2Þ

and for ARX as

AðzÞyðtÞ ¼ BðzÞuðt � nkÞ þ eðtÞ ð3Þ

where the matrices AðzÞ and BðzÞ and the vector CðzÞ are
given by

AðzÞ : 1þ a1z�1 þ � � � þ ana
z�na ð4Þ

BðzÞ : b1z�1 þ � � � þ bnb
z�n

bþ1 ð5Þ

CðzÞ : 1þ c1z�1 þ � � � þ cnc
z�nc ð6Þ

and z�1 is the backward shift operator:

z�1uðtÞ ¼ uðt � 1Þ ð7Þ

For a system in which the number of inputs is given by
ny and the number of outputs by nu, AðzÞ and BðzÞ are ny

by ny and nu by nu matrices, respectively, whose elements
are polynomials in the shift operator z�m (with m any
natural number). The entries aijðzÞ and bijðzÞ of the
matrices AðzÞ and BðzÞ, respectively, can then be written
as

aijðzÞ ¼ dij þ a1ij
z�1 þ � � � þ anaij

z�naij ð8Þ

Notation

a direction coefficient obtained from linear
regression

aij model parameter (with i and j any natural number)
A matrix containing the model parameters aij

b offset coefficient obtained from linear regression
bij model parameter (with i and j any natural number)
B matrix containing the model parameters bij

cI model parameter (with i any natural number)
C vector containing the model parameters ci

e error
G goodness of fit, %
he outside air relative humidity, %
n number of samples
na number of poles
nb number of zeros increased by one
nc order of the measured error
nk time delay in the discrete time domain
pcl cloudiness of the sky

qs global solar ration flux, Wm�2

r2 coefficient of determination of linear regression
s square mean error
Te outside air temperature, 8C
Ti inside air temperature, 8C
t discrete time
u input signal
y output signal
z z-transform operator

Greek letters
d Kronecker symbol
s standard deviation

Subscripts
i,j any natural number
m simulated output data
o original output data

H. UCHIDA FRAUSTO ET AL.148



and

bijðzÞ ¼ b1ij
z
�nkij þ � � � þ bnbij

z
�nkij

�nbij
þ1 ð9Þ

where dij represents the Kronecker symbol.
From the above it is clear that the ARX structure for

a given system can be defined by means of the number of
poles na, the number of zeros nb � 1 and the time
delay nk. The definition of the ARMAX structure
additionally requires the order of the measured error
nc to be known. The matrices AðzÞ, BðzÞ and CðzÞ are
determined by means of off-line parameter identification
methods.

3. Procedures

3.1. Data sets

Instead of using measured values for the outside
climate data and the inside air temperature, data sets
were composed using outside climate data of the Belgian
typical reference year (Dogniaux et al., 1978) and
simulated values for the inside air temperature. The
outside climate variables included in the data set were
the outside air temperature Te in 8C, the outside air
relative humidity he in %, the global solar radiation flux
density qs in Wm�2, and the dimensionless cloudiness of
the sky pcl. The simulated values for the inside air
temperature Ti in 8C were obtained by means of the
Gembloux Dynamic Greenhouse Climate Model
(GDGCM), to which the data of the typical reference
year were fed. It can be discussed whether the use of
simulated data instead of measured data is appropriate
to study the behaviour of ARX and ARMAX models. It
can be expected that ARX and ARMAX models
obtained in this way will fit somewhat better to the
values simulated by the GDGCM than to values that
would be measured in a real greenhouse. However, use
of simulated data obtained by means of an accurate
deterministic model (see below for the accuracy of the
GDGCM) allows a better understanding of the ARX
and ARMAX model behaviour, since the data used to
build and validate the ARX and ARMAX models can
be studied in a detailed way by means of the
deterministic model. Since in this study, the behaviour
of ARX and ARMAX models was studied, rather
than their absolute accuracy, simulated data were
adopted.

The GDGCM is a semi-one-dimensional greenhouse
climate model, describing the energy and mass ex-
changes between seven internal layers (four soil layers,
one vegetation layer, one inside air layer, one cover),
which form the system, and three external layers
(subsoil, outside air, and sky) which constitute, together

with the solar radiation, the boundary conditions. For
each of the layers, heat loss or gain by solar radiation,
far-infrared radiation, conduction, convection, and
latent heat is described mathematically. Furthermore,
a mass transfer equation for vapour is considered. The
model also allows to simulate the effect of control
procedures, like ventilation, heating, etc. Simulated
values of the inside air temperature are typically closer
than 0�58C to measured values. More details on the
model and its validation can be found in de Halleux et al.
(1985), Nijskens et al. (1991), Pirard et al. (1994) and
Pieters and Deltour (1997).

An unheated glasshouse equipped with a proportion-
ally controlled natural ventilation system was assumed.
When the inside air temperature was below the
ventilation set-point temperature, an air renewal rate
of 0�2 h�1 was adopted. When the inside air temperature
was 38C or more above the ventilation set-point
temperature, the air renewal rate was set at 40�2 h�1.
When the inside air temperature was between 0 and 38C
above the ventilation set-point temperature, the ventila-
tion rate was determined by linear interpolation between
0�2 and 40�2 h�1. The ventilation set-point temperatures
for day-time and night-time}determined by an astro-
nomical clock}were fixed at 20 and 188C, respectively.
A linear light-dependent increase of the day-time
ventilation set-point temperature was provided
from a global solar energy flux density of 200Wm�2

on and with a maximum of 28C (i.e. the maximum
ventilation set-point temperature was 228C) for a solar
energy flux density of 500Wm�2 or higher. Two
transition periods between night- and day-time, in
which intermediate set-point temperatures were im-
posed, were introduced to avoid abrupt temperature
changes in the greenhouse. Greenhouse construction
and cladding parameters were obtained from Pirard et al.
(1993) and Pollet and Pieters (2000) and are summarised
in Table 1. Simulations were carried out for every
minute of a complete year, while data were output for
every 5min.

3.2. Structure definition and selection

All four input variables of the outside climate (namely
air temperature, relative humidity, global solar
radiation and cloudiness of the sky) used in the
GGDCM were used in the ARMAX and ARX
structures. From the validation results described in
Pirard et al. (1993) and from other literature (von
Zabeltitz, 1986; Bakker et al., 1995), it is well
documented that inclusion of these four variables in
greenhouse climate models enables accurate results for
the inside air temperature to be obtained.
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For the selection of the most appropriate structures of
the ARX and ARMAX models, the maximum number
of poles na and the maximum time delay nk were set at 4.
The maximum number of zeros was set at 5 (i.e. nb was
set at 4), while the order of the measured error nc was
limited to 1. Since the sampling period was 5min, this
implies that data being gathered 20min before could be
included in the model. From the literature (Bakker et al.,
1995), this seems to be a reasonable time delay to take

into account thermal inertia effects on the inside air
temperature.

Taking into account the possible combinations of
coefficients and variables to be included, this implies
that for each set of data 4096 structures had to be
elaborated and tested for their output accuracy for the
ARMAX and the ARX models. From these 4096
model structures, the model showing the best goodness
of fit (Ljung, 2000) was selected. The goodness of fit is

Table 1
Values for the Gembloux Dynamic Greenhouse Climate Model parameters (after Pirard et al., 1993; Pieters & Pollet, 2000)

Soil characteristics
Thermal conductivity (four layers), Wm�1K�1 700 1950 1900 1900
Layer thickness (four layers), m 0�05 0�15 0�30 0�70
Specific mass (four layers), kgm�3 1300 1450 1600 1650
Heat capacity (four layer), J kg�1K�1 3350 1250 1250 1200
Reflectance for solar radiation, dimensionless 0�85
Emittance for far-infrared radiation, dimensionless 0�40
Subsoil layer thickness, m 8�8
Characteristic length of the floor, m 1001

Construction characteristics
Latitude , 8N 50�78
Length of the greenhouse, m 48�00
Width of the greenhouse, m 44�80
Number of spans, dimensionless 14
Height to the eaves, m 3�10
Height to the ridge, m 3�75
Emittance of the cover surface, dimensionless 0�90
Cover transmittance for far-infrared radiation, dimensionless 0�0
Dry cover transmittance for beam radiation (angles of incidence
of 0, 15, 30, 45, 60, 75 and 908), dimensionless

0�846 0�846 0�841 0�822 0�773 0�552 0�00

Wet cover transmittance for beam radiation (angles of
incidence of 0, 15, 30, 45, 60, 75 and 908), dimensionless

0�842 0�840 0�804 0�735 0�635 0�475 0�00

Dry cover reflectance for beam radiation (angles of
incidence of 0, 15, 30, 45, 60, 75 and 908), dimensionless

0�074 0�074 0�089 0�138 0�187 0�328 1�00

Wet cover reflectance for beam radiation (angles of incidence
of 0, 15, 30, 45, 60, 75 and 908), dimensionless

0�078 0�080 0�126 0�225 0�325 0�405 1�00

Cover absorptance for diffuse solar radiation, dimensionless 0�065
Dry cover transmittance for diffuse solar radiation, dimensionless 0�710
Wet cover transmittance for diffuse solar radiation, dimensionless 0�652
Frame transmittance for solar radiation, dimensionless 0�86
Cladding heat capacity per unit surface area, J kg�1m�2 8000
Maximum equivalent water film thickness, mm 0�040

Vegetation characteristics
Reflectance for solar radiation, dimensionless 0�22
Canopy attenuation coefficient, dimensionless 0�6093
Characteristic length of the leaves, m 0�20
Emittance for far infrared radiation, dimensionless 0�95
Heat capacity, J kg�1K�1 4180

Air characteristics
Specific mass, kgm�3 1�25
Specific heat , J kg�1m�3 1256
Latent heat of condensation for water vapour, kJ kg�1 2437
Air speed near the cover, m s�1 0�30
Lewis number, dimensionless 0�89
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defined as

G ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðym;i � yo;iÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyo;i �

1

n

Pn
k¼1 yo;kÞ

2

r
0
BB@

1
CCA� 100

¼ 1�
s

s

� �
� 100 ð10Þ

where: ym is the output of the ARMAX or ARX model;
yo represents the original output data (in this case, the
temperature simulated by means of the GGDCM); n is
the number of samples; s is the square mean error of
modelled versus original output and s is the standard
deviation of the original system output.

Apart from the goodness of fit, the suitability of the
different model structures was also assessed by means of
the coefficient of determination obtained through linear
regression of the modelled results on the original data
for the inside air temperature. The regression coefficients
allowed to further assess the agreement between
modelled and original temperatures.

The parameter identification for the ARMAX and
ARX structures was carried out using some special
features of the commercially available software package
MATLAB (Ljung, 2000). This procedure was repeated
for the first and middle week of each season. Validation
of the models was carried out using the data set of the
following week. It was then investigated to what extent
the model structures and parameters (coefficients) differed
from each other for the several periods, i.e. to what extent
the model structure or parameter set depended on the
specific data set used for its construction.

3.3. Analysis of hierarchy of variables

For control purposes, the quality of the adjustment is
only one of the selection criteria to be used. Simplicity of
the model is also to be considered. Therefore, it was
tried to simplify each of the selected structures by
leaving out one of the variables and the subsequent
retuning of the model. Since the four variables were
omitted one by one, this implies that four new models
were obtained. The goodness of fit and the regression
parameters were subsequently compared with the
performance results of the original model structure. In
this way, the impact of each input variable over the
output variable could be determined and a hierarchy of
the input variables could be established for each season
and middle season.

3.4. Construction of general model structure

Because of the simplicity requirement, it is not
convenient to use different model structures for each

season and each middle season. Therefore, it was tried
to define a model structure that gives sufficient accuracy
throughout a complete year. To this end, each of the
previously obtained structures was tuned for all periods
and tested for its goodness of fit and regression
parameters. Furthermore, a general model structure
was built by selecting all or most of the components of
the separate seasonal model structures. This means that
terms for which the corresponding coefficient (para-
meter) was zero in all or most of the seasonal models
were left out of the general model structure. The general
model was subsequently compared with the other model
structures with respect to its performance character-
istics.

As a second step in this optimisation process, the
retuning frequency, needed to maintain a predefined
goodness of fit or coefficient of determination for the
regression of simulated on original inside air tempera-
tures, was investigated. Two strategies were tested. The
first strategy consisted in retuning the general model at
fixed time intervals. Each time, the model was retuned
based on the results of the preceding time interval and
used for the prediction of the temperature during the
following time interval. This means that the tuning
period was always as long as the prediction period. On
the one hand, longer tuning periods tend to produce
more accurate regression results for the parameter
estimation. On the other hand, longer prediction periods
tend to lead to worse estimates, because of the shift from
the tuning period, which leads to the use of a model
under conditions that are different from the conditions
for which it was tuned. From this, it is clear that some
optimal retuning interval can be found. Therefore, three
different intervals were tested, namely 7, 14 and 30 days.
The second strategy was based on a tolerance criterion.
Retuning was carried out only after it was observed that
the performance of the model had fallen below a pre-
defined threshold value.

4. Results and discussion

4.1. Selection of seasonal models

Table 2 gives the selected models for the first and
middle week of each season. It can be observed that all
selected models included all four outside climate
variables. Except for the ARMAX model for the middle
spring week and the ARX model for the middle summer
week, it was also found that in most cases, inclusion of
values of the outside climate data which were older than
15min did not improve the model performance. In most
cases, outside climate data older than 10min were not
considered. Consequently, the resulting models were

MODELLING GREENHOUSE TEMPERATURE BY MEANS OF AUTO REGRESSIVE MODELS 151



T
a
b
le
2

M
o
d
el
st
ru
ct
u
re
s
a
n
d
ty
p
ic
a
l
p
a
ra
m
et
er
id
en
ti
fi
ca
ti
o
n
re
su
lt
s
fo
r
th
e
se
a
so
n
a
l
m
o
d
el
s
g
iv
in
g
th
e
in
si
d
e
a
ir
te
m
p
er
a
tu
re
(T

i)
a
s
a
fu
n
ct
io
n
o
f
o
u
ts
id
e
a
ir
te
m
p
er
a
tu
re
(T

e)
,

o
u
ts
id
e
a
ir
re
la
ti
ve
h
u
m
id
it
y
(h

e)
,
g
lo
b
a
l
so
la
r
ra
d
ia
ti
o
n
fl
u
x
(q

s)
,
cl
o
u
d
in
es
s
o
f
th
e
sk
y
(p

cl
)
a
n
d
p
er
tu
rb
a
ti
o
n
(e
)
in
th
e
d
is
cr
et
e
ti
m
e
(t
)
d
o
m
a
in
,
u
si
n
g
th
e
z-
tr
a
n
sf
o
rm
o
p
er
a
to
r

(z
�
1
);

a
1
to

a
4
,

b
1

1
to

b
4

3
a
n
d

c 1
a
re
re
g
re
ss
iv
e
co
ef
fi
ci
en
ts
a
s
d
efi
n
ed
in
th
e
m
o
d
el
st
ru
ct
u
re

T
ið

tÞ
¼

½T
e
ðt
Þ

h
e
ðt
Þ

q
sð

tÞ
p

cl
ðt
Þ	

1
þ

a
1
z�

1
þ

a
2
z�

2
þ

a
3
z�

3
þ

a
4
z�

4

b
1
1
z�

1
þ

b
1
2
z�

2
þ

b
1
3
z�

3

b
2
1
z�

1
þ

b
2
2
z�

2
þ

b
2
3
z�

3
þ

b
2
4
z�

4

b
3
1
z�

1
þ

b
3
2
z�

2
þ

b
3
3
z�

3

b
4
1
z�

1
þ

b
4
2
z�

2
þ

b
4
3
z�

3

2 6 6 6 4

3 7 7 7 5þ
1
þ

c 1
z�

1

1
þ

a
1
z�

1
þ

a
2
z�

2
þ

a
3
z�

3
þ

a
4
z�

4
eð

tÞ

a
1

a
2

a
3

a
4

b
1
1

b
1
2

b
1
3

b
2
1

b
2
2

b
2
3

b
2
4

b
3
1

b
3
2

b
3
3

b
4
1

b
4
2

b
4
3

c 1

A
R
M

A
X

W
in
te
r

�
0
�9
5
2

0
0

0
0

0
�0
3
5

0
0

2
�3
5
�

1
0
�
4

0
0

0
2
�8
8
�

1
0
�
4

0
0
�1
0
7

0
0

0
�6
6
9

M
id
w
in
te
r

�
0
�9
4
7

0
0

0
0

0
�0
3
7

0
0

�
8
�7
4
�

1
0
�
5

0
0

3
�2
1
�

1
0
�
4

0
0

0
�1
6
8

0
0

0
�7
4
5

S
p
ri
n
g

�
0
�9
3
1

0
0

0
0

0
�0
4
5

0
0

0
6
�6
4
�

1
0
�
4

0
5
�7
7
�

1
0
�
4

0
0

0
�1
6
7

0
0

0
�4
8
5

M
id
sp

ri
n
g

�
2
�0
8
6

0
�9
8
6

0
�3
0
2

�
0
�2
0
1

0
�4
2
2

�
0
�8
2
6

0
�4
0
4

0
�
0
�0
3
1

0
�0
6
1

�
0
�0
3
0

�
0
�0
3
1

0
�0
6
1

�
0
�0
3
0

0
�3
0
9

�
0
�5
8
1

0
�2
7
2

�
1
�0
0
5

S
u
m
m
er

�
0
�9
9
4

0
0

0
0
�6
1
1

�
0
�6
1
1

0
�
0
�0
6
1

0
�0
6
1

0
0

4
�3
5
�

1
0
�
5

�
7
�8
9
�

1
0
�
6

0
0
�1
0
0

�
0
�0
2
8

0
0
�4
3
5

M
id
su

m
m
er

�
1
�8
7
5

0
�8
8
0

0
0

0
�0
0
3

0
0

0
2
�9
5
�

1
0
�
4

0
0

0
1
�7
5
�

1
0
�
5

0
0
�0
2
1

0
0

0

A
u
tu

m
n

�
0
�9
5
8

0
0

0
0

0
�0
2
1

0
0

0
�0
0
2

0
0

2
�4
7
�

1
0
�
4

0
0

0
�1
2
0

0
0

0
�6
7
1

M
id
a
u
tu

m
n

�
0
�9
6
4

0
0

0
0
�2
9
5

�
0
�2
7
7

0
�
0
�0
2
0

0
�0
2
0

0
0

1
�1
7
�

1
0
�
4

2
�3
3
�

1
0
�
4

0
0
�0
9
8

0
�0
7
7

0
0
�8
3
5

A
R
X

W
in
te
r

�
0
�9
4
8

0
0

0
0

0
�0
3
7

0
0

2
�6
2
�

1
0
�
4

0
0

3
�0
2
�

1
0
�
4

0
0

0
�1
1
6

0
0

0

M
id
w
in
te
r

�
0
�9
2
7

0
0

0
0

0
�0
5
1

0
0

�
1
�1
1
�

1
0
�
4

0
0

4
�4
5
�

1
0
�
4

0
0

0
�2
1
7

0
0

0

S
p
ri
n
g

�
0
�9
2
3

0
0

0
0

0
�0
5
0

0
0

7
�1
0
�

1
0
�
4

0
0

6
�2
3
�

1
0
�
4

0
0

0
�1
9
5

0
0

0

M
id
sp

ri
n
g

�
0
�9
5
7

0
0

0
0

0
�0
2
5

0
0

0
�0
0
1

0
0

2
�5
6
�

1
0
�
4

0
0

0
�1
5
4

0
0

0

S
u
m
m
er

�
0
�9
9
0

0
0

0
0
�7
4
6

�
0
�7
4
0

0
�
0
�0
8
3

0
�0
8
3

0
0

2
�8
7
�

1
0
�
4

�
2
�6
7
�

1
0
�
4

0
0
�1
8
5

�
0
�1
3
1

0
0

M
id
su

m
m
er

�
0
�9
6
6

0
0

0
0

0
�0
1
5

0
0

0
0

0
�0
0
2

1
�7
0
�

1
0
�
4

0
0

0
�1
3
1

0
0

0

A
u
tu

m
n

�
0
�9
5
6

0
0

0
0

0
�0
2
1

0
0

0
�0
0
3

0
0

2
�7
3
�

1
0
�
4

0
0

0
�1
4
5

0
0

0

M
id
a
u
tu

m
n

�
0
�9
5
9

0
0

0
0

0
�0
1
9

0
0

3
�9
3
�

1
0
�
4

0
0

4
�0
3
�

1
0
�
4

0
0

0
0
�1
9
7

0
0

A
R
M

A
X
:
a
u
to

re
g
re
ss
iv
e
m
o
v
in
g
a
v
er
a
g
e
m
o
d
el

w
it
h

ex
te
rn

a
l
in
p
u
t;

A
R
X
:
a
u
to

re
g
re
ss
iv
e
m
o
d
el

w
it
h

ex
te
rn

a
l
in
p
u
t.

H. UCHIDA FRAUSTO ET AL.152



rather compact. This should be considered an advantage
since this facilitates their use in climate control applica-
tions. These results are in agreement with the typical
thermal inertia effects met in greenhouses (Bot, 1989;
Bakker et al., 1995; Hanan, 1998). The slightly higher
‘memory effect’ for the relative humidity with respect to
the other variables has to be explained by the fact that
vapour exchange in greenhouses is a somewhat slower
phenomenon than heat exchange.

With respect to the several coefficients, it is found
that in most models similar coefficients do not differ a
lot among the several seasonal tunings. This implies
that the influence of the several outside climate
variables does not vary a lot throughout the year. From
Table 2 it can be observed, however, that the influence
of the relative humidity, which is usually low, is
relatively larger in autumn. This might be a consequence
of the high humidity and the higher humidity variations
during that period of the year in a maritime climate. The
fact that the highest absolute values for the relative
humidity were found for summer, might be somewhat
misleading. For both the ARX and the ARMAX
models, the values for b21 and b22 obtained for summer
were almost exactly the same but opposite in sign.
Consequently, since relative humidity changes are
usually very small when considered over 5min intervals,
the effect of the relative humidity is small, whereas the
effect of changes in relative humidity is much more
important.

The influence of solar radiation can be seen to be
relatively less important with respect to inside air
temperature changes. This is in contrast with the very
important role that plays solar radiation in the heat
balance of the greenhouse. The rather low coefficients
are to be explained by the fact that solar radiation has
only an indirect effect on inside air temperature, since it
is not directly absorbed by the air. In fact, solar
radiation needs first to be absorbed by the plants, the
soil and the construction, which subsequently exchange
part of the heat gained in that way with the air through
convection. This mechanism obviously damps the effect
of short-term variations of the solar radiation level on
the inside air temperature.

In order to assess the accuracy of the several
ARMAX and ARX models, the simulated results were
compared with the original data for the inside air
temperature. Figure 1 (a and b) shows an example for
both winter period models. The difference between the
simulated and the original inside air temperatures is also
plotted in these figures. From this figure, it can be
observed that the average deviation of the simulated
results was negligible, while the standard deviation was
0.58C for both the ARMAX and ARX models. The
extreme deviations were situated between �1�9 and

1�78C and were linked with abrupt changes in the
temperature evolution. Furthermore, the deviations
between simulated and original values showed a similar
course for both models, so the goodness of fit of both
models was almost the same, namely 83%.

The analysis results of the linear regression of the
simulated results on the original data confirmed
these good performances, as can be deduced from
Table 3. Table 3 gives the linear regression results
for all 16 models. It can be observed that both
winter models had a coefficient of direction close to 1
(namely 0�98) and an offset close to 0 (namely about
0�15), while the coefficient of determination was higher
than 0�97.

When comparing the regression analysis results for
the other seasonal models, it can be observed that most
models gave good results, although the performances
from middle spring to middle summer were clearly
worse than those from autumn until early spring.
Comparing the results from Tables 2 and 3 shows that
the most complicated model structures had the lowest
performances. The poor performance of these models
clearly show the inability of these model structures to
take into account the (non-linear) effect of the ventila-
tion control strategy, although this strategy fully
depends on the greenhouse and the outside climate
behaviour. Inclusion of the ventilation strategy or its
effect in the ARMAX models could thus result in better
performances. Finally, the results of Table 3 clearly
illustrate that the ARX models performed mostly better
than the ARMAX models.

4.2. Hierarchy of variables

The performances of the model structures with
three input variables were compared with those with
four input variables. Depending on the period for
which the model was valid, the omission of one of the
outside climate inputs lowered the coefficient of
determination by �0�0005 to 0�0963 for the ARMAX
models and by 0�0004 to 0�0388 for the ARX models.
In most cases, it was found that omission of the
outside air temperature had the greatest impact on
the coefficient of determination, followed by the
global solar radiation and the cloudiness of the sky,
while the outside relative humidity had the lowest
impact.

Thus, the effect of omitting the relative humidity
from the models was examined. Table 4 shows the
analysis results of the linear regressions of the modelled
results on the original data. From these results and
the results for the models with four inputs, it is clear
that the omission of the relative humidity from the
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model leads to a negligible loss of accuracy for most
models, i.e. for most periods. The loss of accuracy for
the ARMAX models for summer, mid-summer and

autumn, however, clearly shows that the relative
humidity could not be omitted from all structures. The
ARX models show a similar behaviour, but here
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Fig. 1. Original data versus results of the (a) auto regressive moving average model with external input and the (b) auto regressive
model with external input and the difference between both for the first week of winter; , original; , model; , residuals

Table 3

Direction coefficient a, offset b and determination coefficient r2 resulting from the linear regression of the ARMAX and ARX results
on the original data; models with four inputs: outside air temperature, outside air relative humidity, global solar radiation flux and

cloudiness of the sky

ARMAX ARX

Season a b r2 a b r2

Winter 0�977 0�145 0�971 0�978 0�144 0�971
Middle winter 0�945 0�320 0�957 0�961 0�240 0�965
Spring 0�989 0�075 0�988 0�991 0�063 0�989
Middle spring 1�077 0�345 0�871 0�898 1�449 0�918
Summer 0�819 3�194 0�880 0�885 1�950 0�928
Middle summer 0�558 9�176 0�576 0�786 3�692 0�833
Autumn 0�893 1�567 0�918 0�915 1�350 0�922
Middle autumn 0�980 0�188 0�967 0�976 0�232 0�965

ARMAX: auto regressive moving average model with external input; ARX: auto regressive model with external input.
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again their performance was much better than for the
ARMAX models. As a result, it was concluded that a
general model for a complete year must include all four
input variables.

4.3. General model structure

4.3.1. Selection and performance

Despite the fact that the most suitable model
structures did not differ a lot throughout the year (see
Table 2), it was found that none of the seasonal models
could be used as such to model the greenhouse
temperature for a whole year. It was found that for
almost all models, the goodness of fit fell below 65%
about 2 months after the tuning date (data not
shown).

Using the common characteristics of the model
structures for the first and middle week of each season,
the following structure was selected and tested for its

usefulness during a complete year.

TiðtÞ ¼
TeðtÞ heðtÞ qsðtÞ pclðtÞ

� �
1� a1z�1

b11z�1 þ b12z�2

b21z�1 þ b22z�2 þ b23z�3

b3z�1

b4z�1

2
6664

3
7775þ

1þ c1z�1

1� a�1
1

eðtÞ ð11Þ

For the ARX model the coefficient c1 was zero. Since it
was already found that the relative humidity could not
be omitted for all seasons, it was considered a necessary
input variable in the general model.

Table 5 gives the performance characteristics of the
general model that was tuned separately for the first and
middle week of each season. Although the coefficients of
determination were in the range from 0�845 to 0�985 for
the ARMAX models and from 0�903 to 0�987 for the
ARX models, the coefficient of direction and the offset
were not close to 1 and 0, respectively, at least for the

Table 4
Direction coefficient a, offset b, and determination coefficient r2 resulting from the linear regression of the results from the models

with three inputs (outside air temperature, global solar radiation flux and cloudiness of the sky) on the original data and the difference

Dr2 between the determination coefficients for the four inputs models and the three inputs models

ARMAX ARX

Season a b r2 Dr2 a b r2 Dr2

Winter 1�001 �0�064 0�967 0�004 1�004 �0�068 0�968 0�003
Middle winter 0�914 0�549 0�956 0�001 0�937 0�423 0�965 0�001
Spring 1�042 �0�487 0�981 0�007 1�051 �0�539 0�986 0�003
Middle spring 1�051 0�748 0�853 0�018 0�949 0�597 0�879 0�039
Summer 0�688 5�044 0�797 0�086 0�845 2�241 0�900 0�027
Middle summer 0�452 11�57 0�293 0�283 0�786 3�378 0�660 0�173
Autumn 0�878 1�419 0�729 0�189 0�898 1�104 0�738 0�184
Middle autumn 0�993 0�051 0�968 �0�001 0�993 0�049 0�966 �0�001

ARMAX: auto regressive moving average model with external input; ARX: auto regressive model with external input.

Table 5
Direction coefficient a, offset b, and determination coefficient r2 resulting from the linear regression of the general structure model

results on the original data and goodness of fit G with retuning after the first and midweek of each season

ARMAX ARX

Season a b r2 G, % a b r2 G, %

Winter 0�968 0�196 0�967 82�3 0�979 0�150 0�973 83�8
Middle Winter 0�954 0�267 0�956 80�3 0�961 0�231 0�960 81�0
Spring 0�993 0�050 0�985 89�1 0�990 0�072 0�987 89�4
Middle Spring 1�032 �0�099 0�907 67�0 0�896 1�459 0�903 69.6
Summer 0�817 3�255 0�872 64�7 0�881 2�036 0�924 72�8
Middle Summer 0�809 4�243 0�845 55�8 0�890 1�868 0�938 75�0
Autumn 0�789 2�526 0�944 66�9 0�877 1�939 0�949 76�9
Middle Autumn 0�973 0�236 0�964 81�7 0�976 0�225 0�964 81�8
Average 0�917 1�333 0�930 73�5 0�931 0�998 0�950 78�8

ARMAX: auto regressive moving average model with external input; ARX: auto regressive model with external input.

MODELLING GREENHOUSE TEMPERATURE BY MEANS OF AUTO REGRESSIVE MODELS 155



period from summer to autumn. Therefore, it was
concluded that the introduction of a single model
structure which was tuned only once for a complete
year was not a suitable option.

4.3.2. Tuning frequency

Figure 2 gives the evolution of the goodness of fit and
the coefficient of determination resulting from the
regression of modelled on original results throughout a
complete year for two retuning frequencies, namely once
per 7 and once per 30 days. From this figure, it is clear
that a fixed retuning frequency resulted in highly varying
performances of the general structure model, with the 30

days retuning interval giving rise to somewhat better
results. As was to be expected, the performance was
again best in winter and worst in summer. This implies
that the introduction of a pre-defined minimum level of
accuracy is more meaningful from a climate control
point of view. Figure 3 gives the resulting goodness of fit
and the moments of tuning for the general structure
ARX model for the whole spring season, for which the
pre-defined minimum goodness of fit was set at 70%. It
can be seen that 26 retunings were needed, 25 of which
were situated in the second halve of the period under
consideration. For several days, the goodness of fit was
below the pre-defined minimum value. This is to be
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Fig. 2. Goodness of fit and coefficient of determination resulting from the regression of the results of the auto regressive model with
external input on the original data obtained for a retuning period of (a) 7 and (b) 30 days over a complete year, starting on 1
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explained by the fact that in these periods, even a daily
retuning did not allow the pre-defined value to be
obtained. When considered over a complete year, it was
found that this situation is mainly restricted to the
period from middle spring to autumn, in which
ventilation plays a major role.

5. Conclusions

In this study, it was investigated to what extent linear
auto regressive models with external input (ARX) and
linear auto regressive moving average models with
external input (ARMAX) could be used to describe
the inside air temperature of an unheated, naturally
ventilated greenhouse under Western European condi-
tions. Four input variables were considered, namely
outside air temperature, outside air relative humidity,
global solar radiation and cloudiness of the sky. Firstly,
separate models were built for the first and middle week
of each season. It was found that these linear regression
models were suitable to describe the greenhouse
behaviour during most of the year, except for the
ventilation periods, due to the fact that the behaviour of
the greenhouse becomes highly non-linear when control
strategies are imposed. Inclusion of the ventilation effect
in the models should thus be envisaged. It was also
observed that ARX models performed better than
ARMAX models. Although the inclusion of the outside
air humidity in the several seasonal models did not
contribute significantly to the accuracy of the results
during most of the year, it was observed that none of the
input variables could be omitted from models, which
have to be applied over a complete year. It was found
that the application of a single-model structure for a
complete year required frequent retuning during the
year in order the model to remain sufficiently accurate.
For this purpose, retuning when the goodness of fit falls
below a pre-set threshold proved to be more efficient
than retuning at fixed time intervals.
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