6 research outputs found

    Design and Discovery of 6‑[(3<i>S</i>,4<i>S</i>)‑4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro‑2<i>H</i>‑pyran-4-yl)-1,5-dihydro‑4<i>H</i>‑pyrazolo[3,4‑<i>d</i>]pyrimidin-4-one (PF-04447943), a Selective Brain Penetrant PDE9A Inhibitor for the Treatment of Cognitive Disorders

    No full text
    6-[(3<i>S</i>,4<i>S</i>)-4-Methyl-1-(pyrimidin-2-ylmethyl)­pyrrolidin-3-yl]-1-(tetrahydro-2<i>H</i>-pyran-4-yl)-1,5-dihydro-4<i>H</i>-pyrazolo­[3,4-<i>d</i>]­pyrimidin-4-one (PF-04447943) is a novel PDE9A inhibitor identified using parallel synthetic chemistry and structure-based drug design (SBDD) and has advanced into clinical trials. Selectivity for PDE9A over other PDE family members was achieved by targeting key residue differences between the PDE9A and PDE1C catalytic site. The physicochemical properties of the series were optimized to provide excellent in vitro and in vivo pharmacokinetics properties in multiple species including humans. It has been reported to elevate central cGMP levels in the brain and CSF of rodents. In addition, it exhibits procognitive activity in several rodent models and synaptic stabilization in an amyloid precursor protein (APP) transgenic mouse model. Recent disclosures from clinical trials confirm that it is well tolerated in humans and elevates cGMP in cerebral spinal fluid of healthy volunteers, confirming that it is a quality pharmacological tool for testing clinical hypotheses in disease states associated with impairment of cGMP signaling or cognition

    Structure-Based Design of Irreversible Human KAT II Inhibitors: Discovery of New Potency-Enhancing Interactions

    No full text
    A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure–activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate <b>4</b>, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of <i>k</i><sub>inact</sub>/<i>K</i><sub>i</sub> to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles

    Discovery and Characterization of (<i>R</i>)‑6-Neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1‑<i>c</i>][1,4]oxazin-4(9<i>H</i>)‑one (PF-06462894), an Alkyne-Lacking Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator Profiled in both Rat and Nonhuman Primates

    No full text
    We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu<sub>5</sub> negative allosteric modulator (NAM) <b>7</b>. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu<sub>5</sub> NAMs. Increasing the sp<sup>3</sup> character of high-throughput screening hit <b>40</b> afforded a novel morpholinopyrimidone mGlu<sub>5</sub> NAM series. Its prototype, (<i>R</i>)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido­[2,1-<i>c</i>]­[1,4]­oxazin-4­(9<i>H</i>)-one (PF-06462894, <b>8</b>), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound <b>8</b> did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that <b>8</b> did not form any reactive metabolites. However, <b>8</b> caused the identical microscopic skin lesions in NHPs found with <b>7</b>, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance

    Discovery and Characterization of (<i>R</i>)‑6-Neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1‑<i>c</i>][1,4]oxazin-4(9<i>H</i>)‑one (PF-06462894), an Alkyne-Lacking Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator Profiled in both Rat and Nonhuman Primates

    No full text
    We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu<sub>5</sub> negative allosteric modulator (NAM) <b>7</b>. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu<sub>5</sub> NAMs. Increasing the sp<sup>3</sup> character of high-throughput screening hit <b>40</b> afforded a novel morpholinopyrimidone mGlu<sub>5</sub> NAM series. Its prototype, (<i>R</i>)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido­[2,1-<i>c</i>]­[1,4]­oxazin-4­(9<i>H</i>)-one (PF-06462894, <b>8</b>), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound <b>8</b> did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that <b>8</b> did not form any reactive metabolites. However, <b>8</b> caused the identical microscopic skin lesions in NHPs found with <b>7</b>, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance

    A Second-Generation Oral SARS-CoV‑2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19

    No full text
    Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug–drug interactions upon single-agent use of PF-07817883

    A Second-Generation Oral SARS-CoV‑2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19

    No full text
    Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug–drug interactions upon single-agent use of PF-07817883
    corecore