534 research outputs found
Recommended from our members
An Examination of the Relationship Between Values, Family Environment, and Risk Behaviors Among College Students
The purpose of this study was to examine the roles that values and the family environment play in young adult engagement in risky behavior. One hundred seventy-two male and female college students between the ages of 18-25 completed a demographics questionnaire, the Aspirations Index which measures seven life-goal contents that represent different values, the Cognitive Appraisal of Risky Events that assesses young adults’ perceptions of the risks and benefits associated with involvement in risky activities as well as past involvement in risky behaviors and the Family Environment Scale to assess participants' perceptions of their current family environment. A series of regression analyses were then used to assess the relationship between three dimensions of the family environment and risky behavior involvement and the relationship between participants' intrinsic and extrinsic values and perceived positive consequences and negative consequences of risky behavior. Results from this study supported the idea that certain dimensions of the family environment are related to risk-taking behavior in emerging adults; however, contrary to previous research, the relationship dimension of the family environment was not predictive of young adult risk-taking. Moreover, family activities that communicate family values did not contribute any additional information to the prediction of risk-taking behavior. Findings from this study suggest that emerging adult values are related to emerging adult perceptions of the hazards and benefits of risky behavior. Results from this study also highlighted the importance of gender and first-generation college status in predicting risk-taking frequency as well as perceived benefits and hazards of risk-taking. Implications for findings of the current study, limitations, and recommendations for future research are also discussed
Calibration of key temperature-dependent ocean microbial processes in the cGENIE.muffin Earth system model
Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long-recognised as a key parameter in the production and export of organic matter at the ocean surface, it is much less commonly taken into account in the ocean interior. There, bacteria (primarily) transform sinking particulate organic matter into its dissolved constituents and thereby consume dissolved oxygen (and/or other electron acceptors such as sulphate) and release nutrients, which are then available for transport back to the surface. Here we present and calibrate a more complete temperature-dependent representation of marine carbon cycling in the cGENIE.muffin Earth system model, intended for both past and future climate applications. In this, we combine a temperature-dependent remineralisation scheme for sinking organic matter with a biological export production scheme that also includes a temperature-dependent limitation on nutrient uptake in surface waters (and hence phytoplankton growth). Via a parameter ensemble, we jointly calibrate the two parameterisations by statistically contrasting model projected fields of nutrients, oxygen, and the stable carbon isotopic signature (δ13C) of dissolved inorganic carbon in the ocean, with modern observations.
We find that for the present-day, the temperature-dependent version shows as-good-as or better fit to data than the existing tuned non-temperature dependent version of the cGENIE.muffin. The main impact of adding temperature-dependent remineralisation is in driving higher rates of remineralisation in warmer waters and hence a more rapid return of nutrients to the surface there – stimulating organic matter production. As a result, more organic matter is exported below 80 m in mid and low latitude warmer waters as compared to the standard model. Conversely, at higher latitudes, colder water temperature reduces the rate of nutrient supply to the surface as a result of slower in-situ rates of remineralisation.
We also assess the implications of including a more complete set of temperature-dependent parameterisations by analysing a series of historical transient experiments. We find that between the pre-industrial and the present day, in response to a simulated air temperature increase of 0.9 °C and ocean warming of 0.12 °C (0.6 °C in surface waters and 0.02 °C in deep waters), a reduction in POC export at 80 m of just 0.3 % occurs. In contrast, with no assumed temperature-dependent biological processes, global POC export at 80 m falls by 2.9 % between the pre-industrial and present day as a consequence of ocean stratification and reduced nutrient supply to the surface. This suggests that increased nutrient recycling in warmer conditions offsets some of the stratification-induced surface nutrient limitation in a warmer world, and that less carbon (and nutrients) then reaches the inner and deep ocean. This extension to the cGENIE.muffin Earth system model provides it with additional capabilities in addressing marine carbon cycling in warmer past and future worlds
Affiliative Behavior, Ultrasonic Communication and Social Reward Are Influenced by Genetic Variation in Adolescent Mice
Social approach is crucial for establishing relationships among individuals. In rodents, social approach has been studied primarily within the context of behavioral phenomena related to sexual reproduction, such as mating, territory defense and parental care. However, many forms of social interaction occur before the onset of reproductive maturity, which suggests that some processes underlying social approach among juvenile animals are probably distinct from those in adults. We conducted a longitudinal study of social investigation (SI) in mice from two inbred strains to assess the extent to which genetic factors influence the motivation for young mice to approach one another. Early-adolescent C57BL/6J (B6) mice, tested 4–6 days after weaning, investigated former cage mates to a greater degree than BALB/cJ (BALB) mice, irrespective of the sex composition within an interacting pair. This strain difference was not due to variation in maternal care, the phenotypic characteristics of stimulus mice or sensitivity to the length of isolation prior to testing, nor was it attributable to a general difference in appetitive motivation. Ultrasonic vocalization (USV) production was positively correlated with the SI responses of mice from both strains. Interestingly, several USV characteristics segregated with the genetic background of young mice, including a higher average frequency and shorter duration for the USVs emitted by B6 mice. An assessment of conditioned place preference responses indicated that there was a strain-dependent difference in the rewarding nature of social contact. As adolescent mice aged, SI responses gradually became less sensitive to genetic background and more responsive to the particular sex of individuals within an interacting pair. We have thus identified a specific, genetic influence on the motivation of early-adolescent mice to approach one another. Consistent with classical theories of motivation, which propose a functional relationship between behavioral approach and reward, our findings indicate that reward is a proximal mechanism through which genetic factors affect social motivation during early adolescence
Distal communication by chimpanzees (Pan troglodytes): evidence for common ground?
van der Goot et al. (2014) proposed that distal, deictic communication indexed the appreciation of the psychological state of a common ground between a signaler and a receiver. In their study, great apes did not signal distally, which they construed as evidence for the human uniqueness of a sense of common ground. This study exposed 166 chimpanzees to food and an experimenter, at an angular displacement, to ask, “Do chimpanzees display distal communication?” Apes were categorized as (a) proximal or (b) distal signalers on each of four trials. The number of chimpanzees who communicated proximally did not statistically differ from the number who signaled distally. Therefore, contrary to the claim by van der Goot et al., apes do communicate distally
Planktic foraminiferal resilience to environmental change associated with the PETM
AbstractCarbonate‐forming organisms play an integral role in the marine inorganic carbon cycle, yet the links between carbonate production and the environment are insufficiently understood. Carbonate production is driven by the abundance of calcifiers, and the amount of calcite produced by each individual (their size and weight). Here we investigate how foraminiferal carbonate production changes in the Atlantic, Pacific and Southern Ocean in response to a 4‐5°C warming and a 0.3 surface ocean pH reduction during the Palaeocene‐Eocene Thermal Maximum (PETM). To put these local data into a global context, we apply a trait‐based plankton model (ForamEcoGEnIE) to the geologic record for the first time. Our data illustrates negligible change in the assemblage test size and abundance of foraminifers. ForamEcoGEnIE resolves small reductions in size and biomass, but these are short‐lived. The response of foraminifers shows spatial variability linked to a warming‐induced poleward migration and suggested differences in nutrient availability between open‐ocean and shelf locations. Despite low calcite saturation at high latitudes, we reconstruct stable foraminiferal size‐normalised weight. Based on these findings, we postulate that sea surface warming had a greater impact on foraminiferal carbonate production during the PETM than ocean acidification. Changes in the composition of bulk carbonate suggest a higher sensitivity of coccolithophores to environmental change during the PETM than foraminifers.This article is protected by copyright. All rights reserved.</jats:p
Gemini/GMOS Optical Transmission Spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter?
We present ground-based, spectroscopic observations of two transits of the
ultra-hot Jupiter WASP-121b covering the wavelength range 500 - 950 nm
using Gemini/GMOS. We use a Gaussian process framework to model instrumental
systematics in the light curves, and also demonstrate the use of the more
generalised Student's-T process to verify our results. We find that our
measured transmission spectrum, whilst showing overall agreement, is slightly
discrepant with results obtained using HST/STIS, particularly for wavelengths
shortward of 650 nm. In contrast to the STIS results, we find evidence
for an increasing blueward slope and little evidence for absorption from either
TiO or VO in our retrieval, in agreement with a number of recent studies
performed at high-resolution. We suggest that this might point to some other
absorbers, particularly some combination of recently detected atomic metals, in
addition to scattering by hazes, being responsible for the excess optical
absorption and observed vertical thermal inversion. Our results are also
broadly consistent with previous ground-based photometry and 3D GCM
predictions, however, these assumed different chemistry to our retrievals. In
addition, we show that the GMOS observations are repeatable over short periods
(days), similarly to the HST/STIS observations. Their difference over longer
periods (months) could well be the result of temporal variability in the
atmospheric properties (i.e. weather) as predicted by theoretical models of
ultra-hot Jupiters; however, more mundane explanations such as instrumental
systematics and stellar activity cannot be fully ruled out, and we encourage
future observations to explore this possibility.Comment: 17 pages, 10 Figures. Accepted for publication in MNRA
Seasonality in Carbon Flux Attenuation Explains Spatial Variability in Transfer Efficiency
AbstractEach year, the biological carbon pump (BCP) transports large quantities of carbon from the ocean surface to the interior. The efficiency of this transfer varies geographically, and is a key determinant of the atmosphere‐ocean carbon dioxide balance. Traditionally, the attention has been focused on explaining perceived geographical variations in this transfer efficiency (TE) in an attempt to understand it, an approach that has led to conflicting results. Here we combine observations and modeling to show that the spatial variability in TE can instead be explained by the seasonal variability in carbon flux attenuation. We also show that seasonality can explain the contrast between known global estimates of TE, due to differences in the date and duration of sampling. Our results suggest caution in the mechanistic interpretation of annual‐mean patterns in TE and demonstrates that seasonally and spatially resolved data sets and models might be required to generate accurate evaluations of the BCP.</jats:p
Leukotriene antagonists as first-line or add-on asthma controller therapy
Most randomized trials of treatment for asthma study highly selected patients under idealized conditions. METHODS: We conducted two parallel, multicenter, pragmatic trials to evaluate the real-world effectiveness of a leukotriene-receptor antagonist (LTRA) as compared with either an inhaled glucocorticoid for first-line asthma-controller therapy or a long-acting beta(2)-agonist (LABA) as add-on therapy in patients already receiving inhaled glucocorticoid therapy. Eligible primary care patients 12 to 80 years of age had impaired asthma-related quality of life (Mini Asthma Quality of Life Questionnaire [MiniAQLQ] score =6) or inadequate asthma control (Asthma Control Questionnaire [ACQ] score =1). We randomly assigned patients to 2 years of open-label therapy, under the care of their usual physician, with LTRA (148 patients) or an inhaled glucocorticoid (158 patients) in the first-line controller therapy trial and LTRA (170 patients) or LABA (182 patients) added to an inhaled glucocorticoid in the add-on therapy trial. RESULTS: Mean MiniAQLQ scores increased by 0.8 to 1.0 point over a period of 2 years in both trials. At 2 months, differences in the MiniAQLQ scores between the two treatment groups met our definition of equivalence (95% confidence interval [CI] for an adjusted mean difference, -0.3 to 0.3). At 2 years, mean MiniAQLQ scores approached equivalence, with an adjusted mean difference between treatment groups of -0.11 (95% CI, -0.35 to 0.13) in the first-line controller therapy trial and of -0.11 (95% CI, -0.32 to 0.11) in the add-on therapy trial. Exacerbation rates and ACQ scores did not differ significantly between the two groups. CONCLUSIONS: Study results at 2 months suggest that LTRA was equivalent to an inhaled glucocorticoid as first-line controller therapy and to LABA as add-on therapy for diverse primary care patients. Equivalence was not proved at 2 years. The interpretation of results of pragmatic research may be limited by the crossover between treatment groups and lack of a placebo group
- …