53 research outputs found

    Quantitative LSPR Imaging for Biosensing with Single Nanostructure Resolution

    Get PDF
    AbstractLocalized surface plasmon resonance (LSPR) imaging has the potential to map complex spatio-temporal variations in analyte concentration, such as those produced by protein secretions from live cells. A fundamental roadblock to the realization of such applications is the challenge of calibrating a nanoscale sensor for quantitative analysis. Here, we introduce a new, to our knowledge, LSPR imaging and analysis technique that enables the calibration of hundreds of individual gold nanostructures in parallel. The calibration allowed us to map the fractional occupancy of surface-bound receptors at individual nanostructures with nanomolar sensitivity and a temporal resolution of 225 ms. As a demonstration of the technique’s applicability to molecular and cell biology, the calibrated array was used for the quantitative LSPR imaging of anti-c-myc antibodies harvested from a cultured 9E10 hybridoma cell line without the need for further purification or processing

    Effects of shell thickness on the electric field dependence of exciton recombination in CdSe/CdS core/shell quantum dots

    Get PDF
    Here we examine the effects of shell thickness on the photophysical properties of CdSe/CdS core/shell quantum dots (QDs) in an electric field. Photoluminescence (PL) of QDs in an applied electric field is observed to decrease markedly with increasing shell thickness, with a thick-shelled (4.9 nm shell) sample exhibiting an order of magnitude greater PL suppression than a thin-shelled sample (1.25 nm shell) with the same core

    Dissection of the Transformation of Primary Human Hematopoietic Cells by the Oncogene NUP98-HOXA9

    Get PDF
    NUP98-HOXA9 is the prototype of a group of oncoproteins associated with acute myeloid leukemia. It consists of an N-terminal portion of NUP98 fused to the homeodomain of HOXA9 and is believed to act as an aberrant transcription factor that binds DNA through the homeodomain. Here we show that NUP98-HOXA9 can regulate transcription without binding to DNA. In order to determine the relative contributions of the NUP98 and HOXA9 portions to the transforming ability of NUP98-HOXA9, the effects of NUP98-HOXA9 on primary human CD34+ cells were dissected and compared to those of wild-type HOXA9. In contrast to previous findings in mouse cells, HOXA9 had only mild effects on the differentiation and proliferation of primary human hematopoietic cells. The ability of NUP98-HOXA9 to disrupt the differentiation of primary human CD34+ cells was found to depend primarily on the NUP98 portion, whereas induction of long-term proliferation required both the NUP98 moiety and an intact homeodomain. Using oligonucleotide microarrays in primary human CD34+ cells, a group of genes was identified whose dysregulation by NUP98-HOXA9 is attributable primarily to the NUP98 portion. These include RAP1A, HEY1, and PTGS2 (COX-2). Their functions may reflect the contribution of the NUP98 moiety of NUP98-HOXA9 to leukemic transformation. Taken together, these results suggest that the effects of NUP98-HOXA9 on gene transcription and cell transformation are mediated by at least two distinct mechanisms: one that involves promoter binding through the homeodomain with direct transcriptional activation, and another that depends predominantly on the NUP98 moiety and does not involve direct DNA binding

    Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery

    No full text
    Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer’s disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future

    Method for Printing Functional Protein Microarrays

    No full text

    Synthesis of a Reactive Oxygen Species-Responsive Doxorubicin Derivative

    No full text
    A heterobifunctional reactive oxygen species (ROS)-responsive linker for directed drug assembly onto and delivery from a quantum dot (QD) nanoparticle carrier was synthesized and coupled to doxorubicin using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/sulfo–NHS coupling. The doxorubicin conjugate was characterized using 1H NMR and LC-MS and subsequently reacted under conditions of ROS formation (Cu2+/H2O2) resulting in successful and rapid thioacetal oxidative cleavage, which was monitored using 1H NMR

    Growing applications for bioassembled Förster resonance energy transfer cascades

    No full text
    Arranging multiple fluorophores into carefully designed assemblies allows them to engage in directed energy transfer cascades that can span significant portions of both the visible spectrum and nanoscale space. Combining these cascades with the 3-dimensional control of fluorophore placement provided by different types of biological templates, and especially DNA, may allow them to progress from an interesting research platform to enabling new applications. Here, we review the progress in creating such systems based on the diversity of available fluorophores and biological scaffolds. Preliminary work toward targeted applications ranging from optical utility in light harvesting, lasing, molecular computing, optical data storage and encryption to biosensing and photodynamic therapy are discussed. Finally, we provide a perspective on how this unique combination of photonically active biomaterials may transition to concerted applications
    • …
    corecore