159 research outputs found

    Hydrating the Pseudomonas aeruginosa periplasm under desiccating conditions

    Get PDF
    Reduced matric water potential external to the cell has a desiccating effect on bacteria in dry environments. To facilitate hydration, cells must regulate their internal water potential. Accumulating small compatible solutes reduce the cytosolic water potential, though it is unknown how the periplasm of gram negative bacteria is hydrated. As this compartment houses many processes, hydration is important. Linear and cyclic osmoregulated periplasmic glucans are known to accumulate under water-replete (hypo-osmotic) conditions reducing the periplasmic water-potential relative to the cytosol, limiting swelling of the cytoplasmic compartment. Interestingly, we observed a greater accumulation of linear glucans in biofilm grown Pseudomonas aeruginosa cells on matric stress media, strongly suggesting a role hydrating the periplasm under low-water-content conditions. Additionally, deficiency of cyclic, but not linear glucans reduced survival during matric stress conditions, supporting the importance of glucans hydrating the periplasm. Mutants deficient in producing linear or cyclic glucans experienced increased envelope stress during growth on matric stress conditions as shown by the over-expression of the alginate biosynthesis operon - part of the AlgU/T dependent envelope stress response - resulting in a mucoid colony phenotype. Overexpression of the linear glucan biosynthesis gene is able to rescue cyclic glucan deficient mutants from alginate over-expression, suggesting some functional redundancy between the glucans. Overall, our findings suggest that accumulating periplasmic glucans moderate the envelope stress experienced by the cell under matric stress conditions by hydrating the periplasm

    Reduced phase error through optimized control of a superconducting qubit

    Full text link
    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors in particular, we have developed a new experimental metrology --- amplified phase error (APE) pulses --- that amplifies and helps identify phase errors in general multi-level qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement "half derivative" an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to 1.6\sim 1.6^{\circ} per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit 2|2\rangle state, is also reduced to 104\sim 10^{-4} for 20%20\% faster gates.Comment: 4 pages, 4 figures with 2 page supplementa

    Representations of sport in the revolutionary socialist press in Britain, 1988–2012

    Get PDF
    This paper considers how sport presents a dualism to those on the far left of the political spectrum. A long-standing, passionate debate has existed on the contradictory role played by sport, polarised between those who reject it as a bourgeois capitalist plague and those who argue for its reclamation and reformation. A case study is offered of a political party that has consistently used revolutionary Marxism as the basis for its activity and how this party, the largest in Britain, addresses sport in its publications. The study draws on empirical data to illustrate this debate by reporting findings from three socialist publications. When sport did feature it was often in relation to high profile sporting events with a critical tone adopted and typically focused on issues of commodification, exploitation and alienation of athletes and supporters. However, readers’ letters, printed in the same publications, revealed how this interpretation was not universally accepted, thus illustrating the contradictory nature of sport for those on the far left

    Caloric Restriction Alters the Metabolic Response to a Mixed-Meal: Results from a Randomized, Controlled Trial

    Get PDF
    OBJECTIVES: To determine if caloric restriction (CR) would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I)). METHODS: Forty-six volunteers were randomized to a weight maintenance diet (Control), 25% CR, or 12.5% CR plus 12.5% energy deficit from structured aerobic exercise (CR+EX), or a liquid calorie diet (890 kcal/d until 15% reduction in body weight)for six months. Fasting and postprandial plasma samples were obtained at baseline, three, and six months. A targeted mass spectrometry-based platform was used to measure concentrations of individual free fatty acids (FFA), amino acids (AA), and acylcarnitines (AC). S(I) was measured with an intravenous glucose tolerance test. RESULTS: Over three and six months, there were significantly larger differences in fasting-to-postprandial (FPP) concentrations of medium and long chain AC (byproducts of FA oxidation) in the CR relative to Control and a tendency for the same in CR+EX (CR-3 month P = 0.02; CR-6 month P = 0.002; CR+EX-3 month P = 0.09; CR+EX-6 month P = 0.08). After three months of CR, there was a trend towards a larger difference in FPP FFA concentrations (P = 0.07; CR-3 month P = 0.08). Time-varying differences in FPP concentrations of AC and AA were independently related to time-varying S(I) (P<0.05 for both). CONCLUSIONS: Based on changes in intermediates of FA oxidation following a food challenge, CR imparted improvements in metabolic flexibility that correlated with improvements in S(I). TRIAL REGISTRATION: ClinicalTrials.gov NCT00099151
    corecore