10 research outputs found

    Neurophysiologic effects of spinal manipulation in patients with chronic low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is growing evidence for the efficacy of SM to treat LBP, little is known on the mechanisms and physiologic effects of these treatments. Accordingly, the purpose of this study was to determine whether SM alters the amplitude of the motor evoked potential (MEP) or the short-latency stretch reflex of the erector spinae muscles, and whether these physiologic responses depend on whether SM causes an audible joint sound.</p> <p>Methods</p> <p>We used transcranial magnetic stimulation to elicit MEPs and electromechanical tapping to elicit short-latency stretch reflexes in 10 patients with chronic LBP and 10 asymptomatic controls. Neurophysiologic outcomes were measured before and after SM. Changes in MEP and stretch reflex amplitude were examined based on patient grouping (LBP vs. controls), and whether SM caused an audible joint sound.</p> <p>Results</p> <p>SM did not alter the erector spinae MEP amplitude in patients with LBP (0.80 Âą 0.33 vs. 0.80 Âą 0.30 ÎźV) or in asymptomatic controls (0.56 Âą 0.09 vs. 0.57 Âą 0.06 ÎźV). Similarly, SM did not alter the erector spinae stretch reflex amplitude in patients with LBP (0.66 Âą 0.12 vs. 0.66 Âą 0.15 ÎźV) or in asymptomatic controls (0.60 Âą 0.09 vs. 0.55 Âą 0.08 ÎźV). Interestingly, study participants exhibiting an audible response exhibited a 20% decrease in the stretch reflex (p < 0.05).</p> <p>Conclusions</p> <p>These findings suggest that a single SM treatment does not systematically alter corticospinal or stretch reflex excitability of the erector spinae muscles (when assessed ~ 10-minutes following SM); however, they do indicate that the stretch reflex is attenuated when SM causes an audible response. This finding provides insight into the mechanisms of SM, and suggests that SM that produces an audible response may mechanistically act to decrease the sensitivity of the muscle spindles and/or the various segmental sites of the Ia reflex pathway.</p

    Effect of spinal manipulation on sensorimotor functions in back pain patients: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is a recognized public health problem, impacting up to 80% of US adults at some point in their lives. Patients with LBP are utilizing integrative health care such as spinal manipulation (SM). SM is the therapeutic application of a load to specific body tissues or structures and can be divided into two broad categories: SM with a high-velocity low-amplitude load, or an impulse "thrust", (HVLA-SM) and SM with a low-velocity variable-amplitude load (LVVA-SM). There is evidence that sensorimotor function in people with LBP is altered. This study evaluates the sensorimotor function in the lumbopelvic region, as measured by postural sway, response to sudden load and repositioning accuracy, following SM to the lumbar and pelvic region when compared to a sham treatment.</p> <p>Methods/Design</p> <p>A total of 219 participants with acute, subacute or chronic low back pain are being recruited from the Quad Cities area located in Iowa and Illinois. They are allocated through a minimization algorithm in a 1:1:1 ratio to receive either 13 HVLA-SM treatments over 6 weeks, 13 LVVA-SM treatments over 6 weeks or 2 weeks of a sham treatment followed by 4 weeks of full spine "doctor's choice" SM. Sensorimotor function tests are performed before and immediately after treatment at baseline, week 2 and week 6. Self-report outcome assessments are also collected. The primary aims of this study are to 1) determine immediate pre to post changes in sensorimotor function as measured by postural sway following delivery of a single HVLA-SM or LVVA-SM treatment when compared to a sham treatment and 2) to determine changes from baseline to 2 weeks (4 treatments) of HVLA-SM or LVVA-SM compared to a sham treatment. Secondary aims include changes in response to sudden loads and lumbar repositioning accuracy at these endpoints, estimating sensorimotor function in the SM groups after 6 weeks of treatment, and exploring if changes in sensorimotor function are associated with changes in self-report outcome assessments.</p> <p>Discussion</p> <p>This study may provide clues to the sensorimotor mechanisms that explain observed functional deficits associated with LBP, as well as the mechanism of action of SM.</p> <p>Trial registration</p> <p>This trial is registered in ClinicalTrials.gov, with the ID number of <a href="http://www.clinicaltrials.gov/ct2/show/NCT00830596">NCT00830596</a>, registered on January 27, 2009. The first participant was allocated on 30 January 2009 and the final participant was allocated on 17 March 2011.</p

    Effect of chiropractic manipulative therapy on reaction time in special operations forces military personnel: a randomized controlled trial

    No full text
    Abstract Background Chiropractic manipulative therapy (CMT) has been shown to improve reaction time in some clinical studies. Slight changes in reaction time can be critical for military personnel, such as special operation forces (SOF). This trial was conducted to test whether CMT could lead to improved reaction and response time in combat-ready SOF-qualified personnel reporting little or no pain. Methods This prospective, randomized controlled trial was conducted at Blanchfield Army Community Hospital, Fort Campbell, KY, USA. Active-duty US military participants over the age of 19 years carrying an SOF designation were eligible. Participants were randomly allocated to CMT or wait-list control. One group received four CMT treatments while the other received no treatment within the 2-week trial period. Assessment included simple hand/foot reaction time, choice reaction time, and Fitts’ Law and whole-body response time. On visits 1 and 5, the same five assessments were conducted immediately pre- and post-treatment for the CMT group and before and after a 10-min wait period for the wait-list group. Primary outcomes included between-group differences for the pre-CMT/wait-list period at visit 1 and visit 5 for each test. Secondary outcomes included between-group differences in immediate pre- and post-(within visit) changes. Analysis of covariance was used for all data analysis. Results One hundred and seventy-five SOF-qualified personnel were screened for eligibility; 120 participants were enrolled, with 60 randomly allocated to each group. Due to technical problems resulting in inconsistent data collection, data from 77 participants were analyzed for simple hand/foot reaction time. The mean ± standard deviation (SD) age was 33.0 ± 5.6 years and all participants were male. No between-group statistically significant differences were found for any of the five biomechanical tests, except immediate pre- and post-changes in favor of the CMT group in whole-body response time at both assessment visits. There were four adverse events, none related to trial participation. Conclusions A single session of CMT was shown to have an immediate effect of reducing the time required for asymptomatic SOF qualified personnel to complete a complex whole-body motor response task. However, sustained reduction in reaction or response time from five tests compared with a wait-list control group was not observed following three sessions of CMT. Trial registration ClinicalTrials.gov, NCT02168153. Registered on 12 June 2014

    Association of lumbar spine stiffness and flexion-relaxation phenomenon with patient-reported outcomes in adults with chronic low back pain – a single-arm clinical trial investigating the effects of thrust spinal manipulation

    No full text
    Abstract Background Spinal manipulation (SM) is used commonly for treating low back pain (LBP). Spinal stiffness is routinely assessed by clinicians performing SM. Flexion-relaxation ratio (FRR) was shown to distinguish between LBP and healthy populations. The primary objective of this study was to examine the association of these two physiological variables with patient-reported pain intensity and disability in adults with chronic LBP (>12 weeks) receiving SM. Methods A single-arm trial provided 12 sessions of side-lying thrust SM in the lumbosacral region over 6 weeks. Inclusion criteria included 21–65 years old, Roland-Morris Disability Questionnaire (RMDQ) score ≥ 6 and numerical pain rating score ≥ 2. Spinal stiffness and FRR were assessed pre-treatment at baseline, after 2 weeks and after 6 weeks of treatment. Lumbar spine global stiffness (GS) were calculated from the force-displacement curves obtained using i) hand palpation, ii) a hand-held device, and iii) an automated indenter device. Lumbar FRR was assessed during trunk flexion-extension using surface electromyography. The primary outcomes were RMDQ and pain intensity measured by visual analog scale (VAS). Mixed-effects regression models were used to analyze the data. Results The mean age of the 82 participants was 45 years; 48% were female; and 84% reported LBP >1 year. The mean (standard deviation) baseline pain intensity and RMDQ were 46.1 (18.1) and 9.5 (4.3), respectively. The mean reduction (95% confidence interval) after 6 weeks in pain intensity and RMDQ were 20.1 mm (14.1 to 26.1) and 4.8 (3.7 to 5.8). There was a small change over time in the palpatory GS but not in the hand-held or automated GS, nor in FRR. The addition of each physiologic variable did not affect the model-estimated changes in VAS or RMDQ over time. There was no association seen between physiological variables and LBP intensity. Higher levels of hand-held GS at L3 and automated GS were significantly associated with higher levels of RMDQ (p = 0.02 and 0.03, respectively) and lower levels of flexion and extension FRR were significantly associated with higher levels of RMDQ (p = 0.02 and 0.008, respectively) across the 3 assessment time points. Conclusions Improvement in pain and disability observed in study participants with chronic LBP was not associated with the measured GS or FRR. Trial registration NCT01670292 on clinicaltrials.gov, August 2, 201
    corecore