915 research outputs found

    The influence of MRI scan position on patients with oropharyngeal cancer undergoing radical radiotherapy

    Get PDF
    <p>Background: The purpose of this study was to demonstrate how magnetic resonance imaging (MRI) patient position protocols influence registration quality in patients with oropharyngeal cancer undergoing radical radiotherapy and the consequences for gross tumour volume (GTV) definition and radiotherapy planning.</p> <p>Methods and materials: Twenty-two oropharyngeal patients underwent a computed tomography (CT), a diagnostic MRI (MRID) and an MRI in the radiotherapy position within an immobilization mask (MRIRT). Clinicians delineated the GTV on the CT viewing the MRID separately (GTVC); on the CT registered to MRID (GTVD) and on the CT registered to MRIRT (GTVRT). Planning target volumes (PTVs) were denoted similarly. Registration quality was assessed by measuring disparity between structures in the three set-ups. Volumetric modulated arc therapy (VMAT) radiotherapy planning was performed for PTVC, PTVD and PTVRT. To determine the dose received by the reference PTVRT, we optimized for PTVC and PTVD while calculating the dose to PTVRT. Statistical significance was determined using the two-tailed Mann–Whitney or two-tailed paired student t-tests.</p> <p>Results: A significant improvement in registration accuracy was found between CT and MRIRT versus the MRID measuring distances from the centre of structures (geometric mean error of 2.2 mm versus 6.6 mm). The mean GTVC (44.1 cm3) was significantly larger than GTVD (33.7 cm3, p value = 0.027) or GTVRT (30.5 cm3, p value = 0.014). When optimizing the VMAT plans for PTVC and investigating the mean dose to PTVRT neither the dose to 99% (58.8%) nor 95% of the PTV (84.7%) were found to meet the required clinical dose constraints of 90% and 95% respectively. Similarly, when optimizing for PTVD the mean dose to PTVRT did not meet clinical dose constraints for 99% (14.9%) nor 95% of the PTV (66.2%). Only by optimizing for PTVRT were all clinical dose constraints achieved.</p> <p>Conclusions: When oropharyngeal patients MRI scans are performed in the radiotherapy position there are significant improvements in CT-MR image registration, target definition and PTV dose coverage.</p&gt

    Study of diffusion weighted MRI as a predictive biomarker of response during radiotherapy for high and intermediate risk squamous cell cancer of the oropharynx: The MeRInO study

    Get PDF
    Introduction and background: A significant proportion of patients with intermediate and high risk squamous cell cancer of the oropharynx (OPSCC) continue to relapse locally despite radical chemoradiotherapy (CRT). The toxicity of the current combination of intensified dose per fraction radiotherapy and platinum based chemotherapy limits further uniform intensification. If a predictive biomarker for outcomes from CRT can be identified during treatment then individualised and adaptive treatment strategies may be employed. Methods/design: The MeRInO study is a prospective observational imaging study of patients with intermediate and high risk, locally advanced OPSCC receiving radical RT or concurrent CRT Patients undergo diffusion weighted MRI prior to treatment (MRI_1) and during the third week of RT (MRI_2). Apparent diffusion coefficient (ADC) measurements will be made on each scan for previously specified target lesions (primary and lymph nodes) and change in ADC calculated. Patients will be followed up and disease status for each target lesion noted. The primary aim of the MeRInO study is to determine the threshold change in ADC from baseline to week 3 of RT that may identify the sub-group of non-responders during treatment. Discussion: The use of DW-MRI as a predictive biomarker during RT for SCC H&N is in its infancy but studies to date have found that response to treatment may indeed be predicted by comparison of DW-MRI carried out before and during treatment. However, previous studies have included all sub-sites and biological sub-types. Establishing ADC thresholds that predict for local failure is an essential step towards using DW-MRI to improve the therapeutic ratio in treating SCC H&N. This would be done most robustly in a specific H&N sub-site and in sub-types with similar biological behaviour. The MeRInO study will help establish these thresholds in OPSCC

    An evaluation of systematic versus strategically-placed camera traps for monitoring feral cats in New Zealand

    Get PDF
    We deploy camera traps to monitor feral cat (Felis catus) populations at two pastoral sites in Hawke’s Bay, North Island, New Zealand. At Site 1, cameras are deployed at pre-determined GPS points on a 500-m grid, and at Site 2, cameras are strategically deployed with a bias towards forest and forest margin habitat where possible. A portion of cameras are also deployed in open farmland habitat and mixed scrub. We then use the abundance-induced heterogeneity Royle–Nichols model to estimate mean animal abundance and detection probabilities for cameras in each habitat type. Model selection suggests that only cat abundance varies by habitat type. Mean cat abundance is highest at forest margin cameras for both deployment methods (3 cats [95% CI 1.9–4.5] Site 1, and 1.7 cats [95% CI 1.2–2.4] Site 2) but not substantially higher than in forest habitats (1.7 cats [95% CI 0.8–3.6] Site 1, and 1.5 cats [95% CI 1.1–2.0] Site 2). Model selection shows detection probabilities do not vary substantially by habitat (although they are also higher for cameras in forest margins and forest habitats) and are similar between sites (8.6% [95% CI 5.4–13.4] Site 1, and 8.3% [5.8–11.9] Site 2). Cat detections by camera traps are higher when placed in forests and forest margins; thus, strategic placement may be preferable when monitoring feral cats in a pastoral landscape

    A One Health overview, facilitating advances in comparative medicine and translational research.

    Get PDF
    Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF
    • …
    corecore