730 research outputs found

    Biological mechanisms underlying inter‐individual variation in factor VIII clearance in haemophilia

    Full text link
    Previous studies have highlighted marked inter‐individual variations in factor VIII (FVIII) clearance between patients with haemophilia (PWH). The half‐life of infused FVIII has been reported to vary from as little as 5.3 hours in some adult PWH, up to as long as 28.8 hours in other individuals. These differences in clearance kinetics have been consistently observed using a number of different plasma‐derived and recombinant FVIII products. Furthermore, recent studies have demonstrated that half‐life for extended half‐life (EHL‐) FVIII products also demonstrates significant inter‐patient variation. Since time spent with FVIII trough levels <1% has been shown to be associated with increased bleeding risk in PWH on prophylaxis therapy, this variability in FVIII clearance clearly has major clinical significance. Recent studies have provided significant novel insights into the cellular basis underlying FVIII clearance pathways. In addition, accumulating data have shown that endogenous plasma VWF levels, ABO blood group and age, all play important roles in regulating FVIII half‐life in PWH. Indeed, multiple regression analysis suggests that together these factors account for approximately 34% of the total inter‐individual variation in FVIII clearance observed between subjects with severe haemophilia A. In this review, we consider these and other putative modulators of FVIII half‐life, and discuss the biological mechanisms through which these factors impact upon FVIII clearance in vivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156160/2/hae14078.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156160/1/hae14078_am.pd

    Bostonia: v. 64, no. 1

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Promising Functional Readouts of Immunity in a Blood-Stage Malaria Vaccine Trial

    Get PDF
    The authors discuss results from an early trial of a vaccine based on Plasmodium MSP-3 protein reported by Pierre Druilhe and colleagues

    Cross-Sectional Associations Bet ween Abdominal and Thoracic Adipose Tissue Compartments and Adiponectin and Resistin in the Framingham Heart Study

    Get PDF
    OBJECTIVE: To test the association of regional fat depots with circulating adiponectin and resistin concentrations and to assess the potential mediating effect of adipokines on associations between abdominal fat depots and cardiometabolic risk factors. RESEARCH DESIGN AND METHODS: Participants from the Framingham Heart Study offspring cohort (n = 916, 55% women; mean age 59 years) free of cardiovascular disease underwent computed tomography measurement of visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), pericardial fat, and intrathoracic fat volumes and assays of circulating adiponectin and resistin. RESULTS: VAT, SAT, pericardial fat, and intrathoracic fat were negatively correlated with adiponectin (r = −0.19 to −0.34, P < 0.001 [women]; r = −0.15 to −0.26, P < 0.01 [men] except SAT) and positively correlated with resistin (r = 0.16–0.21, P < 0.001 [women]; r = 0.11–0.14, P < 0.05 [men] except VAT). VAT increased the multivariable model R2 for adiponectin from 2–4% to 10–13% and for resistin from 3–4% to 3–6%. Adjustment for adipokines did not fully attenuate associations between VAT, SAT, and cardiometabolic risk factors. CONCLUSIONS: Adiponectin and resistin are correlated with fat depots cross-sectionally, but none of the adipokines can serve as surrogates for the fat depots. Relations between VAT, SAT, and cardiometabolic risk factors were not fully explained by adiponectin or resistin concentrations.National Insitute's of Health National Heart, Lung, and Blood Institute’s Framingham Heart Study (N01-HC-25195); the National Institutes of Health; National Center for Research Resources; General Clinical Research Centers Program (M01-RR-01066); Career Development Award from the American Diabetes Association; National Institute of Diabetes and Digestive and Kidney Diseases (K24 DK080140, RO1 DK080739); National Heart, Lung, and Blood Institute, National Institutes of Health (2K24HL04334

    Human Glial-Restricted Progenitor Transplantation into Cervical Spinal Cord of the SOD1G93A Mouse Model of ALS

    Get PDF
    Cellular abnormalities are not limited to motor neurons in amyotrophic lateral sclerosis (ALS). There are numerous observations of astrocyte dysfunction in both humans with ALS and in SOD1G93A rodents, a widely studied ALS model. The present study therapeutically targeted astrocyte replacement in this model via transplantation of human Glial-Restricted Progenitors (hGRPs), lineage-restricted progenitors derived from human fetal neural tissue. Our previous findings demonstrated that transplantation of rodent-derived GRPs into cervical spinal cord ventral gray matter (in order to target therapy to diaphragmatic function) resulted in therapeutic efficacy in the SOD1G93A rat. Those findings demonstrated the feasibility and efficacy of transplantation-based astrocyte replacement for ALS, and also show that targeted multi-segmental cell delivery to cervical spinal cord is a promising therapeutic strategy, particularly because of its relevance to addressing respiratory compromise associated with ALS. The present study investigated the safety and in vivo survival, distribution, differentiation, and potential efficacy of hGRPs in the SOD1G93A mouse. hGRP transplants robustly survived and migrated in both gray and white matter and differentiated into astrocytes in SOD1G93A mice spinal cord, despite ongoing disease progression. However, cervical spinal cord transplants did not result in motor neuron protection or any therapeutic benefits on functional outcome measures. This study provides an in vivo characterization of this glial progenitor cell and provides a foundation for understanding their capacity for survival, integration within host tissues, differentiation into glial subtypes, migration, and lack of toxicity or tumor formation

    Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis.

    Get PDF
    BACKGROUND: Bedaquiline and clofazimine are important drugs in the treatment of drug-resistant tuberculosis and are commonly used across southern Africa, although drug susceptibility testing is not routinely performed. In this study, we did a genotypic and phenotypic analysis of drug-resistant Mycobacterium tuberculosis isolates from cohort studies in hospitals in KwaZulu-Natal, South Africa, to identify resistance-associated variants (RAVs) and assess the extent of clofazimine and bedaquiline cross-resistance. We also used a comprehensive dataset of whole-genome sequences to investigate the phylogenetic and geographical distribution of bedaquiline and clofazimine RAVs in southern Africa. METHODS: In this study, we included M tuberculosis isolates reported from the PRAXIS study of patients with drug-resistant tuberculosis treated with bedaquiline (King Dinuzulu Hospital, Durban) and three other cohort studies of drug-resistant tuberculosis in other KwaZulu-Natal hospitals, and sequential isolates from six persistently culture-positive patients with extensively drug-resistant tuberculosis at the KwaZulu-Natal provincial referral laboratory. Samples were collected between 2013 and 2019. Microbiological cultures were done as part of all parent studies. We sequenced whole genomes of included isolates and measured bedaquiline and clofazimine minimum inhibitory concentrations (MICs) for isolates identified as carrying any Rv0678 variant or previously published atpE, pepQ, and Rv1979c RAVs, which were the subject of the phenotypic study. We combined all whole-genome sequences of M tuberculosis obtained in this study with publicly available sequence data from other tuberculosis studies in southern Africa (defined as the countries of the Southern African Development Community), including isolates with Rv0678 variants identified by screening public genomic databases. We used this extended dataset to reconstruct phylogenetic relationships across lineage 2 and 4 M tuberculosis isolates. FINDINGS: We sequenced the whole genome of 648 isolates from 385 patients with drug-resistant tuberculosis recruited into cohort studies in KwaZulu-Natal, and 28 isolates from six patients from the KwaZulu-Natal referral laboratory. We identified 30 isolates with Rv0678 RAVs from 16 (4%) of 391 patients. We did not identify any atpE, pepQ, or Rv1979c RAVs. MICs were measured for 21 isolates with Rv0678 RAVs. MICs were above the critical concentration for bedaquiline resistance in nine (43%) of 21 isolates, in the intermediate category in nine (43%) isolates, and within the wild-type range in three (14%) isolates. Clofazimine MICs in genetically wild-type isolates ranged from 0·12-0·5 Όg/mL, and in isolates with RAVs from 0·25-4·0 Όg/mL. Phylogenetic analysis of the extended dataset including M tuberculosis isolates from southern Africa resolved multiple emergences of Rv0678 variants in lineages 2 and 4, documented two likely nosocomial transmission events, and identified the spread of a possibly bedaquiline and clofazimine cross-resistant clone in eSwatini. We also identified four patients with pepQ frameshift mutations that may confer resistance. INTERPRETATION: Bedaquiline and clofazimine cross-resistance in southern Africa is emerging repeatedly, with evidence of onward transmission largely due to Rv0678 mutations in M tuberculosis. Roll-out of bedaquiline and clofazimine treatment in the setting of limited drug susceptibility testing could allow further spread of resistance. Designing strong regimens would help reduce the emergence of resistance. Drug susceptibility testing is required to identify where resistance does emerge. FUNDING: Wellcome Trust, National Institute of Allergy and Infectious Diseases and National Center for Advancing Translational Sciences of the National Institutes of Health

    Marked elevation in plasma osteoprotegerin constitutes an early and consistent feature of cerebral malaria

    Get PDF
    Adherence of infected erythrocytes to vascular endothelium causes acute endothelial cell (EC) activation during Plasmodium falciparum infection. Consequently, proteins stored in Weibel-Palade (WP) bodies within EC are secreted into the plasma. Osteoprotegerin (OPG) binds to VWF and consequently is stored within WP bodies. Given the critical role of EC activation in the pathogenesis of severe malaria, we investigated plasma OPG levels in children with P. falciparum malaria. At presentation, plasma OPG levels were significantly elevated in children with cerebral malaria (CM) compared to healthy controls (means 16.0 vs 0.8 ng/ml; p<0.01). Importantly, OPG levels were also significantly higher in children with CM who had a fatal outcome, compared to children with CM who survived. Finally, in children with CM, plasma OPG levels correlated with other established prognostic indices (including plasma lactate levels and peripheral parasite density). To further investigate the relationship between severe malaria and OPG, we utilised a murine model of experimental CM in which C57BL/6J mice were infected with P. berghei ANKA. Interestingly, plasma OPG levels were increased 4.6 fold within 24 hours following P. berghei inoculation. This early marked elevation in OPG levels was observed before any objective clinical signs were apparent, and preceded the development of peripheral blood parasitaemia. As the mice became increasingly unwell, plasma OPG levels progressively increased. Collectively, these data suggest that OPG constitutes a novel biomarker with prognostic significance in patients with severe malaria. In addition, further studies are required to determine whether OPG plays a role in modulating malaria pathogenesis

    Common Variants in the Adiponectin Gene (ADIPOQ) Associated With Plasma Adiponectin Levels, Type 2 Diabetes, and Diabetes-Related Quantitative Traits: The Framingham Offspring Study

    Get PDF
    OBJECTIVE— Variants in ADIPOQ have been inconsistently associated with adiponectin levels or diabetes. Using comprehensive linkage disequilibrium mapping, we genotyped single nucleotide polymorphisms (SNPs) in ADIPOQ to evaluate the association of common variants with adiponectin levels and risk of diabetes
    • 

    corecore