11 research outputs found

    Being and Feline

    Get PDF

    Differential Interactions of Desipramine with Amphetamine and Methamphetamine: Evidence that Amphetamine Releases Dopamine from Noradrenergic Neurons in the Medial Prefrontal Cortex

    Full text link
    Amphetamine is more effective than methamphetamine at raising dopamine levels in the prefrontal cortex. The current study tested the hypothesis that norepinephrine transporters are involved in this difference. Using microdialysis, dopamine, norepinephrine, and serotonin were measured in the rat prefrontal cortex after administration of methamphetamine or amphetamine, with and without perfusion of desipramine. Amphetamine raised norepinephrine levels more than methamphetamine did. Desipramine raised dopamine and serotonin levels but did not alter metabolite levels. Desipramine attenuated the increase in dopamine by amphetamine while increasing the dopamine released by methamphetamine. These data suggest that methamphetamine and amphetamine differ in altering prefrontal cortical dopamine levels and in interacting with norepinephrine transporters. It is proposed that amphetamine releases dopamine in the prefrontal cortex primarily through norepinephrine transporters, whereas methamphetamine interacts minimally with norepinephrine transporters

    In vivo Characterization of a Selective, Orally Available, and Brain Penetrant Small Molecule GPR139 Agonist

    Get PDF
    Recently, our group along with another demonstrated that GPR139 can be activated by L-phenylalanine (L-Phe) and L-tryptophan (L-Trp) at physiologically relevant concentrations. GPR139 is discretely expressed in brain, with highest expression in medial habenula. Not only are the endogenous ligands catecholamine/serotonin precursors, but GPR139 expressing areas can directly/indirectly regulate the activity of catecholamine/serotonin neurons. Thus, GPR139 appears expressed in an interconnected circuit involved in mood, motivation, and anxiety. The aim of this study was to characterize a selective and brain penetrant GPR139 agonist (JNJ-63533054) in relevant in vivo models. JNJ-63533054 was tested for its effect on c-fos activation in the habenula and dorsal striatum. In vivo microdialysis experiments were performed in freely moving rats to measure basal levels of serotonin or dopamine (DA) in prefrontal cortex (mPFC) and nucleus accumbens (NAc). Finally, the compound was profiled in behavioral models of anxiety, despair, and anhedonia. The agonist (10–30 mg/kg, p.o.) did not alter c-fos expression in medial habenula or dorsal striatum nor neurotransmitter levels in mPFC or NAc. JNJ-63533054 (10 mg/kg p.o.) produced an anhedonic-like effect on urine sniffing, but had no significant effect in tail suspension, with no interaction with imipramine, no effect on naloxone place aversion, and no effect on learned helplessness. In the marble burying test, the agonist (10 mg/kg p.o.) produced a small anxiolytic-like effect, with no interaction with fluoxetine, and no effect in elevated plus maze (EPM). Despite GPR139 high expression in medial habenula, an area with connections to limbic and catecholaminergic/serotoninergic areas, the GPR139 agonist had no effect on c-fos in medial habenula. It did not alter catecholamine/serotonin levels and had a mostly silent signal in in vivo models commonly associated with these pathways. The physiological function of GPR139 remains elusive

    Pharmacological Blockade of Serotonin 5-HT7 Receptor Reverses Working Memory Deficits in Rats by Normalizing Cortical Glutamate Neurotransmission

    Get PDF
    The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission

    In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y2 receptor

    No full text
    Rationale The lack of potent, selective, brain penetrant Y2 receptor antagonists has hampered in vivo functional studies of this receptor. Objective Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y2 receptor antagonist. Methods The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y2 receptors in KAN-Ts cells and rat Y2 receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y2 bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. Results JNJ-31020028 bound with high affinity (pIC50 = 8.07 ± 0.05, human, and pIC50 = 8.22 ± 0.06, rat) and was >100-fold selective versus human Y1, Y4, and Y5 receptors. JNJ-31020028 was demonstrated to be an antagonist (pKB = 8.04 ± 0.13) in functional assays. JNJ-31020028 occupied Y2 receptor binding sites (~90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. Conclusion These results suggest that Y2 receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions

    The hypocretin/orexin system: implications for drug reward and relapse

    No full text
    Hypocretins (also known as orexins) are hypothalamic neuropeptides involved in the regulation of sleep/wake states and feeding behavior. Recent studies have also demonstrated an important role for the hypocretin/orexin system in the addictive properties of drugs of abuse, consistent with the reciprocal innervations between hypocretin neurons and brain areas involved in reward processing. This system participates in the primary reinforcing effects of opioids, nicotine, and alcohol. Hypocretins are also involved in the neurobiological mechanisms underlying relapse to drug-seeking behavior induced by drug-related environmental stimuli and stress, as mainly described in the case of psychostimulants. Based on these preclinical studies, the use of selective ligands targeting hypocretin receptors could represent a new therapeutical strategy for the treatment of substance abuse disorders. In this review, we discuss and update the current knowledge about the participation of the hypocretin system in drug addiction and the possible neurobiological mechanisms involved in these processes regulated by hypocretin transmission.This work was supported by the Instituto de Salud Carlos III grants #PI07/0559,/n#PI10/00316, and #RD06/001/001 (RTA-RETICS), by the Spanish Ministry of Science/nand Technology (Consolider-C, #SAF2007-64062), the Catalan Government/n(SGR2009-00731), and by the Catalan Institution for Research and Advanced Studies/n(ICREA Academia program). A Plaza-Zabala is a recipient of a predoctoral fellowship/nfrom the Spanish Ministry of Education

    Orexin/Hypocretin Based Pharmacotherapies for the Treatment of Addiction: DORA or SORA?

    No full text
    corecore