32 research outputs found

    Ensemble Modeling for Aromatic Production in Escherichia coli

    Get PDF
    Ensemble Modeling (EM) is a recently developed method for metabolic modeling, particularly for utilizing the effect of enzyme tuning data on the production of a specific compound to refine the model. This approach is used here to investigate the production of aromatic products in Escherichia coli. Instead of using dynamic metabolite data to fit a model, the EM approach uses phenotypic data (effects of enzyme overexpression or knockouts on the steady state production rate) to screen possible models. These data are routinely generated during strain design. An ensemble of models is constructed that all reach the same steady state and are based on the same mechanistic framework at the elementary reaction level. The behavior of the models spans the kinetics allowable by thermodynamics. Then by using existing data from the literature for the overexpression of genes coding for transketolase (Tkt), transaldolase (Tal), and phosphoenolpyruvate synthase (Pps) to screen the ensemble, we arrive at a set of models that properly describes the known enzyme overexpression phenotypes. This subset of models becomes more predictive as additional data are used to refine the models. The final ensemble of models demonstrates the characteristic of the cell that Tkt is the first rate controlling step, and correctly predicts that only after Tkt is overexpressed does an increase in Pps increase the production rate of aromatics. This work demonstrates that EM is able to capture the result of enzyme overexpression on aromatic producing bacteria by successfully utilizing routinely generated enzyme tuning data to guide model learning

    Differential Gene Expression and Adherence of Escherichia coli O157:H7 In Vitro and in Ligated Pig Intestines

    Get PDF
    BACKGROUND: Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB) shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS: It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR). Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3) (BHIN) plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE) genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP), and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15), TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48), Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE: Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further

    Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    Get PDF
    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC ( Energy resolution, impact point resolution, angular resolution, πo\pi^o/Îł\gamma rejection )

    Performance of a large scale prototype of the ATLAS accordion electromagnetic calorimeter

    Get PDF
    A 2 m long prototype of a lead-liquid argon electromagnetic calorimeter with accordion-shaped electrodes, conceived as a sector of the barrel calorimeter of the future ATLAS experiment at the LHC, has been tested with electron and pion beams in the energy range 10 to 287 GeV. A sampling term of 10%/root E(GeV) was obtained for electrons in the rapidity range 0 < eta < 1, while the constant term measured over an area of about 1 m(2) is 0.69%. With a cell size of 2.7 cm the position resolution is. about 4 mm/root E(GeV)

    Performance of an endcap prototype of the ATLAS accordion electromagnetic calorimeter

    Get PDF
    The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below 11%/E(GeV)11\%/\sqrt{E(\rm GeV)} and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of 2.2<η<2.92.2 < \eta <2.9. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter

    Investigation of pharmacokinetic drug interaction between clesacostat and DGAT2 inhibitor ervogastat in healthy adult participants

    No full text
    Abstract Co‐administration of clesacostat (acetyl‐CoA carboxylase inhibitor, PF‐05221304) and ervogastat (diacylglycerol O‐acyltransferase inhibitor, PF‐06865571) in laboratory models improved non‐alcoholic fatty liver disease (NAFLD)/non‐alcoholic steatohepatitis (NASH) end points and mitigated clesacostat‐induced elevations in circulating triglycerides. Clesacostat is cleared via organic anion‐transporting polypeptide‐mediated hepatic uptake and cytochrome P450 family 3A (CYP3A); in vitro clesacostat is identified as a potential CYP3A time‐dependent inactivator. In vitro ervogastat is identified as a substrate and potential inducer of CYP3A. Prior to longer‐term efficacy trials in participants with NAFLD, safety and pharmacokinetics (PK) were evaluated in a phase I, non‐randomized, open‐label, fixed‐sequence trial in healthy participants. In Cohort 1, participants (n = 7) received clesacostat 15 mg twice daily (b.i.d.) alone (Days 1–7) and co‐administered with ervogastat 300 mg b.i.d. (Days 8–14). Mean systemic clesacostat exposures, when co‐administered with ervogastat, decreased by 12% and 19%, based on maximum plasma drug concentration and area under the plasma drug concentration–time curve during the dosing interval, respectively. In Cohort 2, participants (n = 9) received ervogastat 300 mg b.i.d. alone (Days 1–7) and co‐administered with clesacostat 15 mg b.i.d. (Days 8–14). There were no meaningful differences in systemic ervogastat exposures when administered alone or with clesacostat. Clesacostat 15 mg b.i.d. and ervogastat 300 mg b.i.d. co‐administration was overall safe and well tolerated in healthy participants. Cumulative safety and no clinically meaningful PK drug interactions observed in this study supported co‐administration of these two novel agents in additional studies exploring efficacy and safety in the management of NAFLD
    corecore