1,533 research outputs found

    Gravitational Casimir effect

    Full text link
    We derive the gravitonic Casimir effect with non-idealised boundary conditions. This allows the quantification of the gravitonic contribution to the Casimir effect from real bodies. We quantify the meagreness of the gravitonic Casimir effect in ordinary matter. We also quantify the enhanced effect produced by the speculated Heisenberg-Couloumb (H-C) effect in superconductors, thereby providing a test for the validity of the H-C theory, and consequently the existence of gravitons.Comment: 6 pages, 2 figure

    Colloquium: Quantum Batteries

    Full text link
    Recent years have witnessed an explosion of interest in quantum devices for the production, storage, and transfer of energy. In this Colloquium, we concentrate on the field of quantum energy storage by reviewing recent theoretical and experimental progress in quantum batteries. We first provide a theoretical background discussing the advantages that quantum batteries offer with respect to their classical analogues. We then review the existing quantum many-body battery models and present a thorough discussion of important issues related to their open nature. We finally conclude by discussing promising experimental implementations, preliminary results available in the literature, and perspectives.Comment: 36 pages, 12 figures, 311 references. Review and perspective article on quantum batteries. Commissioned for Reviews of Modern Physics. Comments and feedback are welcom

    Reconfigurable quantum metamaterials

    Get PDF
    By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields ranging from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.Comment: 16 pages, 8 figure
    • …
    corecore