7,029 research outputs found

    Out of equilibrium dynamics with decentralized exchange cautious trading and convergence to efficiency

    Get PDF
    Is the result that equilibrium trading outcomes are efficient in markets without frictions robust to a scenario where agents' beliefs and plans aren't already aligned at their equilibrium values? In this paper, starting from a situation where agents' beliefs and plans aren't already aligned at their equilibrium values, we study whether out of equilibrium trading converges to efficient allocations. We show that out-of-equilibrium trading does converge with probability 1 to an efficient allocation even when traders have limited information and trade cautiously. In economies where preferences can be represented by Cobb-Douglass utility functions, we show, numerically, that the rate of convergence will be exponential. We show that experimentation leads to convergence in some examples where multilateral exchange is essential to achieve gains from trade. We prove that experimentation does converge with probability 1 to an efficient allocation and the speed of convergence remains exponential with Cobb-Douglass utility functions

    Dynamical Systems on Networks: A Tutorial

    Full text link
    We give a tutorial for the study of dynamical systems on networks. We focus especially on "simple" situations that are tractable analytically, because they can be very insightful and provide useful springboards for the study of more complicated scenarios. We briefly motivate why examining dynamical systems on networks is interesting and important, and we then give several fascinating examples and discuss some theoretical results. We also briefly discuss dynamical systems on dynamical (i.e., time-dependent) networks, overview software implementations, and give an outlook on the field.Comment: 39 pages, 1 figure, submitted, more examples and discussion than original version, some reorganization and also more pointers to interesting direction

    Simplified PBEE to Estimate Economic Seismic Risk for Buildings

    Get PDF
    A seismic risk assessment is often performed on behalf of a buyer of large commercial buildings in seismically active regions. One outcome of the assessment is that a probable maximum loss (PML) is computed. PML is of limited use to real-estate investors as it has no place in a standard financial analysis and reflects too long a planning period for what-if scenarios. We introduce an alternative to PML called probable frequent loss (PFL), defined as the mean loss resulting from an economic-basis earthquake such as shaking with 10% exceedance probability in 5 years. PFL is approximately related to expected annualized loss (EAL) through a site economic hazard coefficient (H) introduced here. PFL and EAL offer three advantages over PML: (1) meaningful planning period; (2) applicability in financial analysis (making seismic risk a potential market force); and (3) can be estimated by a rigorous but simplified PBEE method that relies on a single linear structural analysis. We illustrate using 15 example buildings, including a 7-story nonductile reinforced-concrete moment-frame building in Van Nuys, CA and 14 buildings from the CUREE-Caltech Woodframe Project

    Climate Change and Dam Owner Liability in Rhode Island

    Get PDF
    Increasing precipitation associated with climate change is affecting dam operation and hazards in Rhode Island. Flooding caused by increased precipitation or extreme weather events can cause dam failure or upstream or downstream flooding, resulting in loss of life and property. These losses can result in liability, which may vary based on the dam owner and its purpose. This study assists dam owners and the public in understanding the potential liabilities that may arise as a result of flooding from extreme weather events. Section one provides a background of dam hazards in Rhode Island in the context of climate change. Section two introduces the statutory, common law, and constitutional claims that may be brought against a dam owner after a flood. Section three applies these potential liabilities to illustrate how they may apply to different types of dams and dam owners. Section four evaluates Rhode Island law in the context of state laws from the northeast region, focusing on the application of statutory liability, strict liability and negligence standards, and liability for drawdown

    Viscous damped space structure for reduced jitter

    Get PDF
    A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature

    Simplified Estimation of Economic Seismic Risk for Buildings

    Get PDF
    A seismic risk assessment is often performed on behalf of a buyer of commercial buildings in seismically active regions. One outcome of the assessment is that a probable maximum loss (PML) is computed. PML is of limited use to real-estate investors as it has no place in a standard financial analysis and reflects too long a planning period. We introduce an alternative to PML called probable frequent loss (PFL), defined as the mean loss resulting from shaking with 10% exceedance probability in 5 years. PFL is approximately related to expected annualized loss (EAL) through a site economic hazard coefficient (H) introduced here. PFL and EAL offer three advantages over PML: (1) meaningful planning period; (2) applicability in financial analysis (making seismic risk a potential market force); and (3) can be estimated using a single linear structural analysis, via a simplified method called linear assembly-based vulnerability (LABV) that is presented in this work. We also present a simple decision-analysis framework for real-estate investments in seismic regions, accounting for risk aversion. We show that market risk overwhelms uncertainty in seismic risk, allowing one to consider only expected consequences in seismic risk. We illustrate using 15 buildings, including a 7-story nonductile reinforced-concrete moment-frame building in Van Nuys, California, and 14 buildings from the CUREE-Caltech Woodframe Project

    Uncertainty Propagation and Feature Selection for Loss Estimation in Performance-based Earthquake Engineering

    Get PDF
    This report presents a new methodology, called moment matching, of propagating the uncertainties in estimating repair costs of a building due to future earthquake excitation, which is required, for example, when assessing a design in performance-based earthquake engineering. Besides excitation uncertainties, other uncertain model variables are considered, including uncertainties in the structural model parameters and in the capacity and repair costs of structural and non-structural components. Using the first few moments of these uncertain variables, moment matching requires only a few well-chosen point estimates to propagate the uncertainties to estimate the first few moments of the repair costs with high accuracy. Furthermore, the use of moment matching to estimate the exceedance probability of the repair costs is also addressed. These examples illustrate that the moment-matching approach is quite general; for example, it can be applied to any decision variable in performance-based earthquake engineering. Two buildings are chosen as illustrative examples to demonstrate the use of moment matching, a hypothetical three-story shear building and a real seven-story hotel building. For these two examples, the assembly-based vulnerability approach is employed when calculating repair costs. It is shown that the moment-matching technique is much more accurate than the well-known First-Order-Second-Moment approach when propagating the first two moments, while the resulting computational cost is of the same order. The repair-cost moments and exceedance probability estimated by the moment-matching technique are also compared with those by Monte Carlo simulation. It is concluded that as long as the order of the moment matching is sufficient, the comparison is satisfactory. Furthermore, the amount of computation for moment matching scales only linearly with the number of uncertain input variables. Last but not least, a procedure for feature selection is presented and illustrated for the second example. The conclusion is that the most important uncertain input variables among the many influencing the uncertainty in future repair costs are, in order of importance, ground-motion spectral acceleration, component capacity, ground-motion details and unit repair costs

    Rapid, Specific Determination of Iodine and Iodide by Combined Solid-Phase Extraction/Diffuse Reflectance Spectroscopy

    Get PDF
    A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene−divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine−PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka−Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1−5.0 ppm range can be determined with a total workup time of ∼60 s with a RSD of ∼6%

    Sensitivity of Building Loss Estimates to Major Uncertain Variables

    Get PDF
    This paper examines the question of which sources of uncertainty most strongly affect the repair cost of a building in a future earthquake. Uncertainties examined here include spectral acceleration, ground-motion details, mass, damping, structural force-deformation behavior, building-component fragility, contractor costs, and the contractor's overhead and profit. We measure the variation (or swing) of the repair cost when each basic input variable except one is taken at its median value, and the remaining variable is taken at its 10th and at its 90th percentile. We perform this study using a 1960s highrise nonductile reinforced-concrete moment-frame building. Repair costs are estimated using the assembly-based vulnerability (ABV) method. We find that the top three contributors to uncertainty are assembly capacity (the structural response at which a component exceeds some damage state), shaking intensity (measured here in terms of damped elastic spectral acceleration, Sa), and details of the ground motion with a given Sa
    corecore