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Abstract

Is the result that equilibrium trading outcomes are efficient in mar-
kets without frictions robust to a scenario where agents’ beliefs and
plans aren’t already aligned at their equilibrium values? In this pa-
per, starting from a situation where agents’ beliefs and plans aren’t
already aligned at their equilibrium values, we study whether out-of-
equilibrium trading converges to efficient allocations. We show that
out-of-equilibrium trading does converge with probability 1 to an effi-
cient allocation even when traders have limited information and trade
cautiously. In economies where preferences can be represented by
Cobb-Douglass utility functions, we show, numerically, that the rate of
convergence will be exponential. We show that experimentation leads
to convergence in some examples where multilateral exchange is essen-
tial to achieve gains from trade. We prove that experimentation does
converge with probability 1 to an efficient allocation and the speed of
convergence remains exponential with Cobb-Douglass utility functions.
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2 OUT-OF-EQUILIBRIUM DYNAMICS WITH DECENTRALIZED EXCHANGE

1. Introduction

Is the result that equilibrium trading outcomes are efficient in mar-
kets without frictions robust to a scenario where agents’ beliefs and
plans aren’t already aligned at their equilibrium values? The first wel-
fare theorem states that equilibrium allocations in competitive markets
without frictions are efficient. In this paper, starting from a situation
where agents’ beliefs and plans aren’t already aligned at their equilib-
rium values, we study whether out-of-equilibrium trading converges to
efficient allocations.

We study a pure exchange economy with decentralized (pairwise,
random matching) trading. With decentralized exchange, agents in-
volved in a current match might be willing to take a utility loss (relative
to their current holdings) in anticipation of a gain in a future match2.
However, in our set-up, as agents are aware that their forecasts could
be wrong, they behave cautiously and only carry out actions which
improve their utility evaluated at their current holdings. Thus agents
only propose or accept trades that improve their utility (relative to their
current holdings) and they will do this with limited knowledge about
the preferences of trading partner3. The resultant trading process is
path dependent. We show that the process converges with probability
1 to a pair-wise optimal allocation which, under some additional on
fundamentals, are also Pareto efficient. We show, via numerical sim-
ulation, the speed of convergence is exponential for a economies with
Cobb-Douglass utility functions. Augmenting this process with ex-
perimentation leads to convergence in Scarf’s example of an exchange
economy with a unique globally unstable (under tatonnement dynam-
ics) competitive equilibria where multilateral exchange is essential to
achieve gains from trade. We characterize, analytically, the conver-
gence properties of an augmented process with experimentation and
show, numerically, that the speed of convergence remains exponential
with Cobb-Douglass utility functions.

The approach adopted here contrasts with the classical one (see, for
example (Arrow and Hahn 1971))- either with or without explicit trad-
ing in out-of-equilibrium scenarios (tatonnement or cobweb dynamics,
non-tatonnement dynamics)- suffers from the problem that there is
no explicit price formation rule nor are payoffs well-defined in out-of-
equilibrium scenarios. The implication is that in contrast to equilib-
rium outcomes, the analysis of out-of-equilibrium scenarios depend on

2The interpretation is that random matching and bargaining models could be
used to model exchange in primitive barter markets.

3Under the assumption that agents anticipate the outcomes of any future match
correctly, a large literature has used models of decentralized exchange to study the
strategic foundations of competitive equilibria (see for example (Rubinstein and
Wolinsky 1985, Gale 1986a, Gale 1986b, McLennan and Sonnenschein 1991, Gale
and Sabourian 2005)).
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rules of price adjustment and allocation dynamics aren’t grounded on
the behaviour of agents. In this paper, in contrast, in our model decen-
tralized exchange the map from action profiles to prices and allocations
is well-defined both out-of-equilibrium and at equilibrium. Thus, out-
of-equilibrium dynamics can be grounded explicitly on the (cautious)
behaviour of agents.

Various attempts have been made to model trade in decentralised
economies. Early results (Feldman 1973, Rader 1976) characterise the
conditions required for for a decentralised bilateral exchange economy
to converge to a Pareto Optimal allocation. (Goldman and Starr 1982)
derives generalised versions of these results for k-lateral exchange where
exchange happens between groups of k agents. An alternative approach
is the assumption of ”zero intelligence” (Gode and Sunder 1993). Here
there are a variety of computer agents, one form of which simply makes
random offers subject to a budget constraint. They speculate that the
”efficient” outcomes are due to the double auction market structure
under investigation. Another angle is taken by Foley’s work on statis-
tical equilibrium, for example (Foley 1999), which models an economy
via discrete flows of classes, that is homogeneous classes of, traders
entering a market who have discrete sets of trades they wish to carry
out. The result is probability distributions over trades, so as in our
process agents with identical initial endowments may end up with dif-
ferent final allocations, but as in the many Walrasian frameworks, but
unlike our approach, the trading process remains an unspecified black
box. More recently (Gale 2000) has approached an out of equilibrium
economy with a model with decentralized exchange in the special case
with two commodities and quasi-linear utility functions.

(Axtell 2005) has explored decentralised exchange from a computa-
tional complexity perspective. He argues that the Walrasian auctioneer
picture of exchange is not computationally feasible, while decentralised
exchange is. While this adopts a somewhat decentralised (possibly bi-
lateral perspective) it assumes a high level of information in the groups
which are bargaining (essentially a Pareto optimal outcome for that
group is directly calculated) and seems to sidestep the issue of coordi-
nating the matching of these groups.

In a related contribution (Fisher 1981) studied a model of general
equilibrium stability in which agents are aware they are not at equi-
librium. In our paper, in contrast to (Fisher 1981) we do not require
agents to hold their expectations with certainty and we allow for price
setting by individual agents.

Gintis has looked at an agent-based model of both an exchange econ-
omy (Gintis 2006) and general equilibrium economy (Gintis 2007) al-
though the dynamics in his models, driven by evolutionary selection,
are limited to quite homogeneous agents (for example, in his exchange
economy agents all have the same linear utility functions).
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The remainder of the paper is structured as follows. The next section
is devoted to the study of cautious trading. Section 3 presents numer-
ical methods and results. Section 4 studies augmented processes with
experimentation. The last section concludes. Appendix B presents the
key sections of the source code.

2. Analytics

We consider individuals who are aware they are in an out-of-equilibrium
state and thus realise they may make mistakes if they were to attempt
to condition their current trade based on future expectations. In re-
sponse to this we consider agents who only accept trades which improve
upon their current holdings. We assume that the process is connected,
that is at every time any given pair of agents will attempt exchange
at some point in the future. This idea of accepting only improving
trades in a connected exchange economy we call cautious trading and
precisely specify below.

There are individuals i ∈ I = {1, . . . , I}, commodities j ∈ J =
{1, . . . , J} and endowments eji ∈ R, ei > 0 of commodity j for indi-
vidual i. Trade takes place in periods t ∈ 1, 2, . . . and we write the
bundle of commodities belonging to individual i at time t as xit and
restrict these to positive bundles (you can only trade what you cur-
rently have). Agents have strictly increasing real valued utility func-
tions ui(xit) which are defined for all non-negative consumption bun-
dles4.

In each period t two agents are selected at random such that in any
period there is an equal probability that any particular pair will be
selected. We will assume that once a pair is matched the two agents
put up all their current holdings for exchange; one agent, the proposer,
which without loss of generality is m, proposes a non-positive5 trade zt
to a responder n such that:

xjmt > −z
j
t > −x

j
nt ∀j

and
um(xmt + zt) > um(xmt).

The first condition is just that the trade would leave m and n with
positive quantities of each good. The second condition is that the
trade is utility increasing for m. The responder, n, will accept the
trade if it weakly improves his utility, that is

un(xnt − zt) ≥ un(xnt).

4Formally, the trading dynamics we study in this paper has the feature that
agents do not consume till trade stops. However, following (Ghosal and Morelli
2004), note that a reinterpretation of our model so that agents trade durable goods
that generate consumption flows within each period will allow for both consumption
and trade.

5That is not simply proposing a gift: must be an exchange.
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but reject it otherwise (in which case no trade takes place).
Note that the requirement that agents put up all their current hold-

ings for exchange is without loss of generality. This is because no agent
will have an incentive to conceal his holdings. First an agent is free to
reject any offer that is put on the table. Secondly by concealing some
of his holdings the agent reduces the probability of generating a mu-
tually improving trade6. Therefore, our trading process requires that
the proposer will need to know only his current holdings, his utility
function and the responder’s holdings.

Let us assume that the proposals are drawn at random from the set of
all such proposer’s utility improving proposals, Z, such that there is a
strictly positive probability of choosing a proposal within any open set
X ⊂ Z. Furthermore we will assume that the random choice of a new
proposal will satisfy the following minimal probability weight condition:
there exists some c ∈ (0, 1] such that for all periods t the probability
of choosing a proposal from any open subset X of Z is greater than
cp where p is the probability of choosing a proposal in X if we choose
from a multivariate uniform random distribution over Z.

This is a connected trading process with cautious behaviour, which
we abbreviate to cautious trading.

An allocation X = (x1, . . . ,xk) is pairwise optimal if there exists no
way of redistributing bundles between any pair m,n that would make
at least one strictly better off, while making the other at least as well
off. This notion can be generalised to k−wise optimality in the obvious
way, see (Goldman and Starr 1982) for a full account of this concept
and related results. If k = I then we would be considering Pareto
optimality.

Proposition 1. The Cautious Trading process converges in utility and
the allocations converge to a set of pairwise optimal utility-identical
allocations.

Proof. The sequence of utility values for any agent is increasing as only
mutually utility increasing trades will be made. It is bounded as the
set of feasible allocations is compact (the sum of all goods must be the
sum of the endowments) and a maximum utility value for each agent is
the value when it has all of all goods. So for each agent i the sequence
of utility values ui(xit) converges to its supremum; call the vector of
these ū.

Now consider the sequence of allocations Xt generated by cautious
trading. Any limit points of such a sequence must be pairwise opti-
mal allocations with utilities ū. Suppose it wasn’t then by definition
there would exist a pair of agents who could be made better of by a

6Analytically for the below convergence results we could work with a weaker
condition, an upper bound, but this form is numerically convenient, something we
will return to in section 3.
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trade z. But by assumption there is a strictly positive lower bound
on the probability of picking a trade within every neighbourhood of z
in every period. By continuity there exists some such neighbourhood
which pairwise improves (there may in fact be additional regions of our
allocation space where this holds) so we know that a trade will almost
surely happen at some point in the future between these two agents
and so this cannot be an allocation at the limit of utility. �

The following example makes clear the crucial role of the minimal
probability weight condition in obtaining convergence to pairwise op-
timal allocations.

Example. Suppose there are two agents a and b. We will set up our
example such that there is a non-zero probability that trade will never
occur. Consider a’s proposals to b; assuming that no trade occurs the
set these are drawn from will not depend on time. Furthermore we can
partition the set of improving trades Z into Za the set of individually
improving but not weakly improving to b trades and Z(a,b) the set of
mutually weakly improving trades. Assume we are not at a pairwise
(in this example trivially Pareto) optimal allocation and that Za is also
non-empty. Now assume that a draws its proposals from a fixed prob-
ability distribution for each proposal in this particular state. That is it
picks a z ∈ Za ∪Z(a,b). Now let pa be the probability it picks a proposal

in Za and p(a,b) be the probability it picks a proposal in Z(a,b). It has
been assumed that there is a strictly positive probability of choosing a
proposal within any open set X ⊂ Z, so this applies in particular to Za
and Z(a,b).

Now consider a new process where we transform the probability dis-
tributions over the disjoint sets Za and Z(a,b) by a constant scaling such

that pat = (1−τt)pa and p
(a,b)
t = τtp

(a,b) where τt is given by the sequence
τt = 1

2t+1 for time periods t = 1, 2, . . .. We make no restrictions on the
behaviour if we were to leave the initial state and claim that there is
now a positive probability that trade will never occur so a fortiori we
will not converge to a pairwise/Pareto optimal.

To see this consider the probability of at some point proposing a trade
in Z(a,b), that is one which will be accepted. This is strictly less than

p(a,b)
∑

t τt = p(a,b)

2
, which implies there is a non-zero probability that

trade will never occur. Actually to complete this argument we need b to
propose in the same way. If both agents are proposing in this fashion
then there is a non-zero probability that trade, and hence any kind of
convergence, will never occur. Note that is is possible to generalise
this to a larger number of agents by using the same weights on each
distribution of proposals of a to any agent c.
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While this example is somewhat pathological it illustrates an impor-
tant point. For cautious trade to work we can’t have agents condi-
tioning their actions on the period in a way which essentially rules out
trade at all, or via a limiting process. 7

The following proposition shows that under the assumptions made
cautious trading will get arbitrarily close to the Pareto frontier in finite
time.

Proposition 2 (First Welfare Theorem for Cautious Trading). (i) If
the utility functions are continuously differentiable on the interior of
the consumption set a Pairwise optimal allocation is Pareto optimal.
(ii) If indifference surfaces through the interior of the allocation set
do not intersect the boundary of the allocation set then if one agent
has some of all goods and others have some of at least one good then
cautious trading converges to a Pareto optimal.

Proof. Let X be a pairwise optimal allocation in the interior of the
allocation set. If we are in the interior of the allocation set then by
assumption marginal rates of substitution exist for each agent for each
pair of goods. These must be equal for every pair of agents otherwise
a pairwise improvement would be possible. So they must be equal for
all agents which implies that the allocation X is Pareto optimal.

From proposition 1 we know that the sequence converges to a set of
Pairwise optimal states, so under the extra conditions imposed above
it converges to a set of Pareto optimal states.

Now consider the case where one agent has some of all goods and
others have some of at least one good. We need to establish that the
process reaches the interior of the the allocation set then the result
follows by the above argument.

Consider an agent on the boundary of the allocation set. As the
indifference curves through the interior of the allocation set for all
agents do not intersect the boundary of the set it is always in the
agent’s interest to accept a trade away from the boundary. When
paired with an agent with some of all goods the agent can propose a
trade which leaves him with some of all goods should it take place. As
utility functions are strictly increasing and continuous there exists an
open set of such trades that would be utility improving to the agent
with all goods. So eventually such at trade will happen. This argument
trivially extends to all agents on the boundary, so in finite time we will
reach an allocation in the interior of the allocation set. �

Corollary 1. If after some finite time an exchange process begins cau-
tious trading, then it will converge to a Pairwise/Pareto optimal allo-
cation subject to above conditions.

7Note that in this example we have assumed that agent a needs to know the
utility function of agent b. One could weaken this to an assumption of the knowledge
of the forms of utility functions over an economy as a whole.
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So we could have some kind of initial experimentation process or
trading conditioned on future expectations based on empirical distri-
bution of trades and still obtain the same result if eventually cautious
trading commences.

2.1. Extension to Production. Our convergence results for exchange
can be extended to economies with production in view of (Rader 1964,
Rader 1976). Formally an exchange economy is an array {(ui, ei,RJ

+):
i ∈ I}. An economy with production is an array {(ui, ei,RJ

+) : i ∈
I; (Y f ) : f ∈ F, θif : f ∈ F, i ∈ I} where f ∈ F = {1 . . . F} is the set
of firms and θif is individual i’s share in firm f with

∑
i θif = 1,∀f .

Assume that the production set Y f of firm f is convex, non-empty,
closed, satisfies the no free lunch condition (Y f ∩ RJ

+ ⊂ {0}), allows
for inaction (that is 0 ∈ Y f ), satisfies free disposal and irreversibil-
ity (that is if y ∈ Y f and y 6= 0 then −y /∈ Y f ). We can convert an
economy with production to an economy with household production by
endowing each individual i with a production set Ỹi =

∑
f θifY

f . Next,
by using Rader’s principle of equivalence, an economy with household
production can be associated with an equivalent economy with pure
exchange with indirect preferences defined on trades. The conditions
under which pairwise optimality implies Pareto optimality with such
indirect preferences follow directly from Theorem 2 and its applications
in (Rader 1976).

3. Numerical Results

While we have shown that the sequence of allocations will converge
to a Pareto optimal set, this does not answer the question of how long
such a process will take to get close to Pareto optimal. This section
examines this question via a numerical approach, showing that for a
common class of utility functions, the average speed of convergence is,
in a sense to be specified shortly, good8.

Attention is focused on sets of heterogeneous agents with Cobb-
Douglas preferences and random initial endowments as a benchmark
case. We can represent the preferences by utility functions:

ui(xi) =
∑
j

αji ln(xji ).

One can of course represent Cobb Douglas utilities by ui(xi) =
∏

j(x
j
i )
λj

i .
However, the logarithmic representation is preferred for numerical work
because it has a considerably lower computational cost. We have initial

8This section has been written so as to be as accessible as possible to the non-
programmer. Those with experience of programming may wish to skim this section,
while consulting the source code directly, the key sections of which are included in
appendix B.
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endowments, eji , of each commodity drawn from a uniform distribu-

tion over (0, 1] and parameters αji of the functions are again drawn

from (0, 1] uniformly, then normalised such that the sum,
∑

j α
j
i = 1.

They are normalised to a fixed value so as to make talking about global
utility as the sum of agent’s utilities more meaningful; this does not
change the preferences which they represent.

As before trades are restricted to the set of all trades which leave
both proposer i and responder j with positive quantities of each good,
that is:

−xjmt < zit < −xint
as to actually implement the trading process it is necessary to fix some
boundary values9

The key “objects” we need in our computational model is an agent
and a collection of agents. The former implements agents with Cobb-
Douglas utility functions as specified above, random initial endowments
and importantly specifies the actual mechanics of trade proposals, ac-
ceptance or rejection and trades. The later creates a collection of these
agents and carries out realisations of the economy. A schematic repre-
sentation of these classes can be found in figure 1. Utilising these we
can obtain various numerical results via processes like that illustrated
in figure 2.

We make one further major assumption: each agent makes one pro-
posal per round, irrespective of the size of the economy. A natural way
to approach implementing this model might be to fix some n, perhaps
n = 1 as the total number of proposals per round, with agents drawn
at random in each round. However, if we take seriously the decentral-
isation of the economy then we should assume that agents actions are
unconstrained by the size of the global economy.

We looked mainly at estimated convergence in average global util-
ity to assess the performance of cautious trading. To estimate this we
calculate global utility by summing across utility for all agents in the
economy, then take an average over many runs as the process is stochas-
tic. One can then use the final value as an estimate of limiting utility
and calculate how far away earlier values are. The last few hundred
values are discarded as for them this estimate of limiting utility is not,
relatively speaking, as good. The analysis depends on the increasing

9An alternative, and in some ways more satisfying alternative (as it limits re-
quired information), might be to restrict trades to within the total endowment of
the economy. While analytically we would obtain the same asymptotic results, nu-
merically it would simply lead to many rejected proposal and vastly longer running
times if these were simulated directly. One could try and simulate the proposal pro-
cess indirectly if one could formulate joint probability distributions over improving
offers, over improving proposals and over agent pairing. However for anything other
than trivial economies this is extremely difficult due to the number of dimensions
and changing state when proposals accepted.
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Figure 1. An outline of the main attributes and meth-
ods of the Agent and Economy objects.

Figure 2. An example algorithm of a numerical sim-
ulation of Cautious Trading. The precise details vary
depending the experiment being carried out but this ex-
ample gives an overview of the kind of algorithm used to
generate the data for most of the figures in this paper.

nature of sequences of utility values for agents this analysis to make
sense.

In figure 3 one can see how varying the total number of agents effects
the average speed of convergence. As one can see there is in fact very
little qualitative effect. There is some increase in time taken, however
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Figure 3. Average over many runs of global utility con-
vergence when varying the total number of agents in the
economy. Parameters: 5 goods, 25-100 agents.

Figure 4. Log of average global utility convergence
when varying the total number of agents in the economy.
Parameters: 5 goods, 25-100 agents.

when one plots the log of average convergence as in figure 4 one can
see that we get a close approximation to a straight line after an initial
faster period; suggesting an exponential speed of convergence, at least
over the these time periods.

We also examined the effect of the number of goods via similar anal-
ysis. In figure 5 one can see how the speed of convergence varies with
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Figure 5. Average global utility convergence when
varying the total number of goods in the economy. Pa-
rameters: 4-7 goods, 50 agents.

Figure 6. Log of average global utility convergence
when varying the total number of goods in the economy.
Parameters: 4-7 goods, 50 agents.

the total number of goods in the economy. There is a similar result of
little qualitative change. This is more surprising as we have the same
number of proposals taking place as before over larger increasing num-
bers of goods. When one examines the the log plot in figure 6 one gets
the same kind of result as for varying agents.
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Goods 4 5 6 7
linear coefficient: -0.0026 -0.0019 -0.0021 -0.0021
constant term: 6.3642 5.6688 5.9079 6.3833

Table 1. Fitting exponential function to average con-
vergence for varying numbers of goods. The values given
are for linear fit of log of convergence. For every fit the
p-values for the regressions are less than 0.0005 indicat-
ing an extremely high level of confidence in the fit of the
model.

Agents 25 50 75 100
linear coefficient: -0.0023 -0.0022 -0.0022 -0.0023
constant term: 4.4728 4.3750 5.3190 5.2299

Table 2. Fitting exponential function to average con-
vergence for varying numbers of agents. The values given
are for linear fit of log of convergence. For every fit the
p-values for the regressions are less than 0.0005 indicat-
ing an extremely high level of confidence in the fit of the
model.

One can fit an exponential function, via regression on the log of the
values, to these average utility paths in order to obtain a numerical
estimate for the average speed of convergence. In tables 1 and 2 we
present such results for a range of model sizes. The important point
to note is the approximately exponential convergence in global utility
for a range of sizes of economy, both in terms of number of goods
and number of agents, rather than the actual fitted parameters. Note
that the p-values for the regressions are less than 0.0005 indicating an
extremely high level of confidence in the fit of the model.

4. Experimentation

4.1. Non-convergence of Cautious Trading. Strong, though fairly
standard, assumptions were required for the above analytical results
obtained in section 2. However by introducing the idea of experimen-
tation or making “mistakes” we may be able to do better. One famous
class of examples that show non-convergence and instability in a global
competitive equilibrium is presented in (Scarf 1959). This example can
be adapted for our model in a similar way to (Gintis 2007): the basic
idea is that there are three classes of agents each of whom has a utility
function which is the minimum of the good it has and one other; but
no agent, at least initially, can find an agent with whom a mutually
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improving trade can take place. To specify precisely:

u1 = min(x1, x2) with endowment e1 = (1, 0, 0)

u2 = min(x2, x3) with endowment e2 = (0, 1, 0)

u3 = min(x1, x3) with endowment e3 = (0, 0, 1)

This means that in the Cautious Trading model, and similar mod-
els, no trade will ever take place. In figure 7 we take this example
outlined above and examine what happens numerically, introducing a
small probability ε of making a mistake, that is proposing or accepting
a disimproving trade. If no experimentation takes place no trade ever
happens and global utility remains at 0. As we increase the level of ex-
perimentation short term global utility improves (rises more steeply) at
the cost of a lower level of long term convergence. In cautious trading
form nothing happens, but with experimentation trade happens.

For high values of experimentation faster initial improvement than
low values, but longer term global utility is slightly lower and the econ-
omy more volatile. This suggests that in selecting the level of experi-
mentation there is a trade off between convergent level of utility and
speed of convergence.

Figure 7. Without experimentation no trade takes
place in this model adapted from a model of Scarf. No-
tice how long term utility appears lower for a higher level
of experimentation.

4.2. Analytical Model and Results for Experimentation. To
formally introduce experimentation we draw on the idea of simulated
annealing (Kirkpatrick and Vecchi 1983), a search technique which has
been used in a wide variety of computational search problems, with
much practical success. The basic idea is that we augment a hill climb-
ing search, something closely analogous to the basic form of cautious
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trading, where we make small (bilateral trade) improving steps, with a
temperature parameter which in some way determines the probability
of making a disimproving step, that is going downhill on the search
landscape. Over time the probability of making such moves decreases
according to a cooling schedule and the algorithm will settle at some
maxima the original algorithm may not have found or at least might
not have found so quickly.

One can define the cautious trading with experimentation process as
before for the proposer; however we now have some experimentation
function f from current period in N to a probability in [0, 1] with limit
0 as t→∞. This is the probability in a given period that experimenta-
tion will take place. One can augment with a further function h which
determines the loss in utility that is acceptable in a given period (that
is loss in utility for each agent engaged in trade), subject to a similar
condition that the limit is 0, that is no loss is deemed acceptable at
the limit.

Total experimentation is almost surely finite if the composite process
described above leads to a total loss across all time to all agents that is
bounded with probability 1. Any form of experimentation which ceases
in finite time will trivially satisfy the above.

Proposition 3. If total experimentation is almost surely finite then
cautious trading augmented with experimentation converges with prob-
ability 1 to a set of Pairwise optimal allocations.

Proof. For a particular realisation let xti be the current allocation of
agent i at time t, uti the utility of agent i at time t. Let eti be the loss in
utility to agent i in period t. If no experimentation occurs in period t
for agent i then εti = 0. By assumption the total amount of experimen-
tation of all agents is almost surely finite, so for any particular agent
the sum of εti is also finite.

Let the sequence vi, indexed by t, be given by vti = uti +
∑t

k=1 ε
t.

Then this new sequence vi is increasing. It is also bounded as it is the
sum of two bounded sequences. Therefore it converges to a limit, say
ṽi. But this implies that ui also converges to some limit ũi.

Now consider once more allocations at this limit ũi. They must be
pairwise optimal as if they weren’t then a pairwise improving trade
would be made at some point in the future, even without experimen-
tation. �

Even if we augment the trading process with the possibility that
agents may trade to boundary allocations, subject to the conditions
of continuity and strict monotonicity this will never occur under the
conditions specified below.

Proposition 4. If furthermore utility functions are continuously dif-
ferentiable and indifference curves in the interior of the allocation set
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do not intersect the boundary, the process of Cautious Trading aug-
mented with experimentation will with probability 1 both

(1) not go to an allocation on the boundary
(2) and will converge to a set of Pareto Optimal allocations.

Proof. To go to an allocation on the boundary with the above condi-
tions an agent must in effect accept an infinite loss in utility; as we
assume that the amount of experimentation is almost surely finite this
will almost surely not occur.

If the utility functions are continuously differentiable then any pair-
wise optimal allocation is a Pareto optimal allocation as the marginal
rates of substitution of goods for each agent must be equal. By propo-
sition 3 the process converges to a set of pairwise optimal allocation al-
locations, so with the additional assumption this is Pareto optimal. �

4.3. Experimentation and the speed of convergence. Above an
example adapted from Scarf was presented which showed how exper-
imentation could lead to a better outcome than before, however, this
example is a very special case. An interesting question we can ask nu-
merically is how experimentation effects the speed of convergence in a
larger, more heterogeneous example such as the Cobb Douglas utility
function economy we looked at previously. In fact there is qualitatively
similar long term behaviour when experimentation is included as can
be seen in figure 6 where experimentation is introduced into the orig-
inal model from section 3. For certain values of experimentation we
even see slightly better overall performance with experimentation.

Figure 8. Low levels of experimentation have little ef-
fect in the Cobb Douglas economy we looked at before.
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So we have seen that cautious trading allows trade to occur when it
would not have otherwise happened. Furthermore, in economies where
experimentation is not required, such as the Cobb-Douglas economy
in figure 8, experimentation does not appear to have a qualitatively
detrimental effect.

5. Conclusions

Even with “zero information” an exchange economy with typical as-
sumptions will converge to a Pareto optimal outcome purely through
bilateral exchange among uninformed partners. It is possible to numer-
ically examine the speed of convergence which turns out to be exponen-
tial for a typical class of utility function. Augmenting this process with
experimentation leads to both convergence in some examples where it
did not previously occur and potentially faster convergence in cases
which did converge previously.

One can conceive of this “zero information” as a worst case assump-
tion. In “real” markets one presumably has more to work with but al-
most never the kind of complete information that is typically assumed
in comparable models of exchange. The dual discipline of having to
deal with decentralisation and its resultant lack of information (not
simply uncertainty over a small number of possible states of the world)
and having to explicitly implement the models for numerical investi-
gation has proved useful. A possible next step would be to examine
out-of-equilibrium dynamics in asset trades.
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Appendix A. Numerical Implementation

The numerical model was implemented using the Java programming
language. The implementation explicitly models individual agents via
an Agent class. Each instance of the class stores the agent’s current
bundle of goods, the parameters of its utility function and its current
marginal rates of substitution. Each agent can make or consider offers,
carry out trades and reset itself for another realisation of trading. In
figure 2 a schematic version of the type of algorithm used is presented.

The following subsections outline the details of the models and im-
plementation10. The key source files are contained in appendix B.

A.1. Cautious Trading. Two files contain the key parts of the im-
plementation of Cautious Trading: the Agent and CautiousEconomy
classes. The former implements agents with Cobb-Douglas utility func-
tions, random initial endowments and specifies the mechanics of trade
proposals and trades. The later creates a collection of these agents and
carries out simulated runs of the economy. An a schematic representa-
tion of these classes can be found in figure 1.

A.2. Scarf Example. A modified version of the Agent and CautiousEc-
onomy classes was created to study the behaviour of an economy which
in many settings may not converge. The implementation is broadly
similar to the original, the main changes being to the endowments and
utility functions.

10Source code is available from http://www.warwick.ac.uk/go/jamesporter
which includes all the examples used in this paper, along with code for other nu-
merical experiments.
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A.3. Experimentation. The CautiousEconomy has been augmented
with the possibility of experimentation. Essentially the ExperimentingE-
conomy class adds experimentation to CautiousEconomy via a scaling
parameter to proposed trades. To be more precise an initial level of
allowable experimentation is selected and the allowable level decreases
linearly until it ceases. The probability of experimentation is fixed at
an initial level and this too decreases over time.

Appendix B. Source Code

This section contains the key source code files; many more were
actually used to model the cautious economy. The code11 is arrange
into four distinct levels: agent, economy, experiment and simulation.
The first two play obvious roles, the experiment code provides general
code to investigate the cautious economy and the simulation code runs
experiments and does some processing of results. Figures in this report
were then produced using Matlab.

B.1. Agent Code. The below code is for the basic form of the Agent
class.

Listing 1. Agent class source code
1 package com . por t e r . caut i ous . model ;
2
3 import java . u t i l . Random ;
4
5 public class Agent {
6
7 protected double goods [ ] ;
8 protected double or ig ina lGoods [ ] ;
9 protected double exponents [ ] ;

10 protected double or ig ina lExponent s [ ] ;
11 protected double c u r r e n t U t i l i t y ;
12 protected int nGoods ;
13 protected Random gen ;
14
15 public Agent ( int nGoods ) {
16 this . nGoods = nGoods ;
17 gen = new Random( ) ;
18
19 goods = new double [ nGoods ] ;
20 exponents = new double [ nGoods ] ;
21
22 or ig ina lGoods = new double [ nGoods ] ; // i n i t i a l endowment

s to r ed f o r r e s t a r t
23 or i g ina lExponent s = new double [ nGoods ] ; // i n i t i a l

exponents s to r ed f o r r e s t a r t
24 in i t i a l i z eRandomly ( ) ; // a c t u a l l y i n i t i a l i s e the se

ar rays

11As mentioned previously, see http://www.warwick.ac.uk/go/jamesporter
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25
26 update ( ) ;
27 }
28
29 /∗∗
30 ∗ I n i t i a l i s e the agent with a random s e t o f exponents and

goods ; then norma l i s ing the exponenents
31 ∗/
32
33 protected void i n i t i a l i z eRandomly ( ) {
34 for ( int i =0; i < nGoods ; i++){
35 goods [ i ] = gen . nextDouble ( ) ;
36 or ig ina lGoods [ i ] = goods [ i ] ;
37
38 exponents [ i ] = gen . nextDouble ( ) ;
39 or i g ina lExponent s [ i ] = exponents [ i ] ;
40 }
41 normal i s e ( ) ;
42 }
43
44 /∗∗
45 ∗ Reset the agent , i . e . generate new endowments and

exponents
46 ∗/
47 public void r e s e t ( ) {
48 in i t i a l i z eRandomly ( ) ;
49 update ( ) ;
50 }
51
52 /∗∗
53 ∗ Restart the agent , i . e . r e s t o r e endowments and

exponents
54 ∗/
55 public void r e s t a r t ( ) {
56 r e s t o r e ( ) ;
57 update ( ) ;
58 }
59
60 /∗∗
61 ∗ Update u t i l i t y when t h i s i s nece s sa ry . Should add any

other update
62 ∗ a c t i o n s here .
63 ∗/
64 protected void update ( ) {
65 updat eUt i l i t y ( ) ;
66 }
67
68 /∗∗
69 ∗ Restore o r i g i n a l s t a t e o f agent
70 ∗/
71 protected void r e s t o r e ( ) {
72 for ( int i =0; i < nGoods ; i++){
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73 goods [ i ] = or ig ina lGoods [ i ] ;
74 exponents [ i ] = or ig ina lExponent s [ i ] ;
75 }
76 normal i s e ( ) ;
77 }
78
79 /∗∗
80 ∗ Normalise the u t i l i t y func t i on so exponents sum to

1 .
81 ∗/
82 protected void normal i s e ( ) {
83 double sum = 0 . 0 ;
84 for ( int i =0; i < goods . l ength ; i++){
85 sum += exponents [ i ] ;
86 }
87 a s s e r t sum != 0 . 0 ;
88 for ( int i =0; i < goods . l ength ; i++){
89 exponents [ i ] = exponents [ i ] / sum ;
90
91 }
92 }
93
94 /∗∗
95 ∗ Return u t i l i t y o f an agent (Cobb−Douglas )
96 ∗/
97 public double u t i l i t y ( ) {
98 return u t i l i t y ( this . goods ) ;
99 }

100
101 /∗∗
102 ∗ Assess the u t i l i t y o f bundle (Cobb−Douglas )
103 ∗/
104 public double u t i l i t y (double [ ] bundle ) {
105 double u = 0 . 0 ;
106 for ( int i = 0 ; i < goods . l ength ; i++){
107 u += (Math . l og ( bundle [ i ] ) ∗ exponents [ i ] ) ;
108 }
109 a s s e r t ( ! Double . isNaN (u) ) ;
110 return u ;
111 }
112
113 /∗∗
114 ∗ Assess the u t i l i t y i f g ive a ( i . e . subt rac t a ) bundle .
115 ∗/
116 protected double u t i l i t y I f G i v e (double change [ ] ) {
117 double [ ] temp = new double [ nGoods ] ;
118 for ( int i =0; i<nGoods ; i++){
119 temp [ i ] = this . goods [ i ] − change [ i ] ;
120 }
121 return u t i l i t y ( temp ) ;
122 }
123
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124 /∗∗
125 ∗ Assess the u t i l i t y i f get a ( i . e . add a ) bundle .
126 ∗/
127 protected double u t i l i t y I f G e t (double change [ ] ) {
128 double [ ] temp = new double [ nGoods ] ;
129 for ( int i =0; i<nGoods ; i++){
130 temp [ i ] = this . goods [ i ] + change [ i ] ;
131 }
132 return u t i l i t y ( temp ) ;
133 }
134
135 /∗∗
136 ∗ Update the cur rent u t i l i t y l e v e l − c a l l t h i s i f you

change the bundle or exponents
137 ∗/
138 protected void updat eUt i l i t y ( ) {
139 c u r r e n t U t i l i t y = u t i l i t y ( ) ;
140 }
141
142 /∗∗
143 ∗ An agent makes a proposa l to another Agent other .
144 ∗ @param The agent to propose o f f e r to
145 ∗ @return Whether a trade took p lace
146 ∗/
147 public boolean propose ( Agent other ) {
148 double proposa l [ ] = getProposa l ( other ) ;
149
150 i f ( other . c on s id e r ( proposa l ) ) {
151 trade ( other , proposa l ) ;
152 return true ;
153 }
154 else {
155 return fa l se ;
156 }
157 }
158
159 /∗∗ Consider a trade o f change , re turn true i f improving ,

f a l s e o the rwi se ∗/
160 public boolean con s id e r (double change [ ] ) {
161 i f ( u t i l i t y I f G e t ( change ) > c u r r e n t U t i l i t y ) {
162 return true ;
163 }
164 else {
165 return fa l se ;
166 }
167 }
168
169 public boolean propose ( Agent other , double

a l l owab l e expe r imenta t i on ) {
170 double [ ] p roposa l = getProposa l ( other ) ;
171 i f ( other . c on s id e r ( proposal , a l l owab l e expe r imenta t i on )

) {
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172 trade ( other , proposa l ) ;
173 return true ;
174 }
175 else {
176 return fa l se ;
177 }
178 }
179
180 protected double [ ] ge tProposa l ( Agent other ) {
181 double proposa l [ ] = new double [ nGoods ] ;
182 boolean improving = fa l se ;
183 int j = 0 ;
184 while ( ! improving ) {
185 for ( int i = 0 ; i < nGoods ; i++) {
186 proposa l [ i ] = goods [ i ] − gen . nextDouble ( ) ∗( goods [ i

] + other . goods [ i ] ) ;
187 a s s e r t ( proposa l [ i ] < goods [ i ] ) ;
188 }
189 i f ( u t i l i t y I f G i v e ( proposa l ) > c u r r e n t U t i l i t y ) {
190 improving = true ;
191 }
192 j ++;
193 }
194 return proposa l ;
195 }
196
197
198 /∗∗
199 ∗ Consider a trade o f change , re turn true i f improving ,

f a l s e o the rwi se
200 ∗/
201 public boolean con s id e r (double change [ ] , double

a l l owab l e expe r imenta t i on ) {
202 i f ( u t i l i t y I f G e t ( change ) > c u r r e n t U t i l i t y −

a l l owab l e expe r imenta t i on ) {
203 return true ;
204 }
205 else {
206 return fa l se ;
207 }
208 }
209
210 /∗∗
211 ∗ Agent ge t s the bundle o f goods change ( some or a l l

components may be negat ive i . e . they l o s e t h i s )
212 ∗/
213 public void get (double change [ ] ) {
214 for ( int i = 0 ; i < nGoods ; i++) {
215 goods [ i ] += change [ i ] ;
216 }
217 update ( ) ;
218 }
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219
220 /∗∗
221 ∗ Agent g i v e s the bundle o f goods change ( some or a l l

components may be negat ive i . e . they gain t h i s )
222 ∗/
223 public void g ive (double change [ ] ) {
224 for ( int i = 0 ; i < nGoods ; i++) {
225 goods [ i ] −= change [ i ] ;
226 }
227 update ( ) ;
228 }
229
230 /∗∗
231 ∗ Trading procedure : parameters : another Agent other and

the trade to take p lace change .
232 ∗/
233 public void t rade ( Agent other , double change [ ] ) {
234 g ive ( change ) ;
235 other . get ( change ) ;
236 }
237
238 /∗∗ The exponents o f the agent are shocked v ia a

normal i sed
239 ∗ Gaussian s c a l e d v ia the shockS ize parameter
240 ∗ @param shockS ize The s c a l i n g to be app l i ed to a

normal i sed Gaussian
241 ∗ ∗/
242 public void shockGaussian (double shockS ize ) {
243 for ( int i = 0 ; i < nGoods ; i++) {
244 exponents [ i ] += this . gen . nextGaussian ( ) ∗ shockS ize ;
245 }
246 }
247 }

B.2. Cautious Economy Code. The below code presents the basic
economy class. All other version are built on this.

Listing 2. Cautious Economy source code
1 package com . por t e r . caut i ous . model ;
2 import java . u t i l . ∗ ;
3 import java . i o . ∗ ;
4
5 /∗∗ The c l a s s Economy c o n s i s t s o f a c o l l e c t i o n
6 ∗ o f independent Agents , who trade
7 ∗ v ia Cautious Trading .
8 ∗/
9 public class CautiousEconomy {

10 List<Agent> agents ;
11 public int s i z e ;
12 public int nGoods ;
13 Random gen ;
14 public int trades , per iod , round ;
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15
16 /∗∗An Economy i s o f s i z e no . o f agents each
17 ∗ o f whom dea l with nGoods no . o f Goods .
18 ∗ @param s i z e Number o f agents in economy
19 ∗ @param nGoods Number o f goods in economy∗/
20 public CautiousEconomy ( int s i z e , int nGoods ) {
21 agents = new ArrayList<Agent>( s i z e ) ;
22 this . s i z e = s i z e ;
23 this . nGoods = nGoods ;
24 Agent a ;
25 for ( int i = 0 ; i < s i z e ; i++) {
26 a = new Agent ( nGoods ) ;
27 agents . add ( a ) ;
28 }
29 gen = new Random( ) ;
30 re se tCounte r s ( ) ;
31 }
32
33 /∗∗ Reset the economy i . e . g ive each agent a random
34 ∗ a l l o c a t i o n and u t i l i t y func t i on .
35 ∗/
36 public void r e s e t ( ) {
37 for ( Agent a : agents ) {
38 a . r e s e t ( ) ;
39 }
40 re se tCounte r s ( ) ;
41 }
42
43 /∗∗
44 ∗ Restore o r i g i n a l s t a t e o f economy
45 ∗/
46 public void r e s t a r t ( ) {
47 for ( Agent a : agents ) {
48 a . r e s t a r t ( ) ;
49 }
50 re se tCounte r s ( ) ;
51 }
52
53 protected void r e se tCounter s ( ) {
54 t rade s = 0 ;
55 per iod = 0 ;
56 round = 0 ;
57 }
58
59 /∗∗
60 ∗ Return the t o t a l u t i l i t y o f a l l Agents in the

Economy .
61 ∗/
62 public double t o t a l U t i l i t y ( ) {
63 double t o t a l = 0 ;
64 for ( int i = 0 ; i < agents . s i z e ( ) ; i++) {
65 t o t a l += agents . get ( i ) . c u r r e n t U t i l i t y ;
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66 }
67 return t o t a l ;
68 }
69
70 /∗∗
71 ∗ Attempt one exchange per member o f the economy
72 ∗/
73 public void round ( ) {
74 int r ;
75 for ( int i = 0 ; i < s i z e ; i++) {
76 // Find another agent to propose to
77 r = gen . next Int ( s i z e ) ;
78 while ( r == i ) {
79 r = gen . next Int ( s i z e ) ;
80 }
81
82 i f ( agents . get ( i ) . propose ( agents . get ( r ) ) ) {
83 t rade s++;
84 }
85 per iod++;
86 }
87 round++;
88 }
89
90 /∗∗
91 ∗ Do many rounds o f t rad ing
92 ∗ @param rounds no . o f rounds o f t rad ing to carry out
93 ∗/
94 public void i t e r a t e ( int rounds ) {
95 for ( int i = 0 ; i<s i z e ; i++) {
96 round ( ) ;
97 }
98 }
99

100 /∗∗
101 ∗ Carry out mu l t ip l e rounds o f t rad ing
102 ∗ @param r Number o f rounds to run
103 ∗/
104 public void runRounds ( int r ) {
105 for ( int i = 0 ; i < r ; i++) {
106 round ( ) ;
107 }
108 }
109
110 protected void outputTota lUt i l i t y ( F i l eWr i t e r w r i t e r ) {
111 try{
112 w r i t e r . wr i t e ( ” Total U t i l i t y : ” + t o t a l U t i l i t y ( )

) ;
113 }
114 catch ( IOException e ) {
115 e . pr intStackTrace ( ) ;
116 }
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117 }
118
119 /∗∗
120 ∗ @param per i od s The number o f pe r i od s
121 ∗ @param r e p e t i t i o n s The number o f r e a l i s a t i o n s to

average over
122 ∗ @throws IOException
123 ∗ ∗/
124 public double [ ] a v e r a g e U t i l i t y ( int per iods , int

r e p e t i t i o n s ) {
125 double r e s u l t s [ ] = new double [ p e r i od s ] ;
126 for ( int i = 0 ; i < r e s u l t s . l ength ; i++) {
127 r e s u l t s [ i ] = 0 ;
128 }
129
130 for ( int r = 0 ; r < r e p e t i t i o n s ; r++) {
131 for ( int i = 0 ; i < pe r i od s ; i++) {
132 round ( ) ;
133 r e s u l t s [ i ]+= t o t a l U t i l i t y ( ) ;
134 }
135 r e s t a r t ( ) ;
136 }
137 for ( int i = 0 ; i < r e s u l t s . l ength ; i++) {
138 r e s u l t s [ i ] /= r e p e t i t i o n s ;
139 }
140 return r e s u l t s ;
141 }
142
143 /∗∗
144 ∗ @param per i od s The number o f pe r i od s
145 ∗ @param r e p e t i t i o n s The number o f r e a l i s a t i o n s to

average over
146 ∗ @throws IOException
147 ∗ ∗/
148 public double [ ] [ ] ManyUtil ity ( int rounds , int r e p e t i t i o n s

) {
149 double r e s u l t s [ ] [ ] = new double [ rounds ] [ r e p e t i t i o n s ] ;
150 for ( int i = 0 ; i < rounds ; i++) {
151 for ( int j = 0 ; j < r e p e t i t i o n s ; j++) {
152 r e s u l t s [ i ] [ j ] = 0 ;
153 }
154 }
155 for ( int r = 0 ; r < r e p e t i t i o n s ; r++) {
156 for ( int i = 0 ; i < rounds ; i++) {
157 round ( ) ;
158 r e s u l t s [ i ] [ r ] = t o t a l U t i l i t y ( ) ;
159 }
160 r e s e t ( ) ;
161 }
162 return r e s u l t s ;
163 }
164
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165 public double [ ] [ ] manyUti l ityFixedIC ( int rounds , int
r e p e t i t i o n s ) {

166 double r e s u l t s [ ] [ ] = new double [ rounds ] [ r e p e t i t i o n s
] ;

167
168 for ( int i = 0 ; i < rounds ; i++) {
169 for ( int j = 0 ; j < r e p e t i t i o n s ; j++) {
170 r e s u l t s [ i ] [ j ] = 0 ;
171 }
172 }
173 for ( int r = 0 ; r < r e p e t i t i o n s ; r++) {
174 for ( int i = 0 ; i < rounds ; i++) {
175 round ( ) ;
176 r e s u l t s [ i ] [ r ] = t o t a l U t i l i t y ( ) ;
177 }
178 r e s t a r t ( ) ;
179 }
180 return r e s u l t s ;
181 }
182
183 /∗∗
184 ∗ Measure the ra t e o f s u c c e s s o f Cautious Trading .
185 ∗ @param rounds
186 ∗ @param i n t e r v a l s
187 ∗ @return An array o f the numbers o f t rade s tak ing

p lace in a s e r i e s o f i n t e r v a l s
188 ∗/
189 public int [ ] measureRateOfSuccess ( int rounds , int

i n t e r v a l s ) {
190 int r e s u l t s [ ] = new int [ rounds / i n t e r v a l s ] ;
191 r e s u l t s [ 0 ] = 0 ;
192 int tradesSoFar ;
193
194 for ( int p = 0 ; p < rounds / i n t e r v a l s ; p++) {
195 tradesSoFar = trade s ;
196 for ( int i = 0 ; i < i n t e r v a l s ; i++) {
197 round ( ) ;
198 }
199 r e s u l t s [ p ] = t rade s − tradesSoFar ;
200 }
201 return r e s u l t s ;
202 }
203 }

B.3. Scarf Example Source Code. The below code is an adapted
from Scarf’s example. It takes a very simple form of experimentation
and simple three class economy which does not converge via cautious
trading and shows that experimentation will ensure trade and conver-
gence in utility takes place. The code below presents only the code for
the Agent class as the other code is roughly as before.
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Listing 3. Cautious Economy source code
1 package com . por t e r . caut i ous . s c a r f ;
2
3 import java . u t i l . Random ;
4
5 import com . por t e r . u t i l . Proce s s ing ;
6
7 public class Agent {
8 protected int type , a l s oDe s i r ed ;
9 protected double goods [ ] = new double [ 3 ] ;

10 protected double c u r r e n t U t i l i t y ;
11 protected Random random ;
12
13 /∗∗
14 ∗ Scar f Example type agent
15 ∗ @param type 0 ,1 ,2 depending on good d e s i r e d ( in

add i t i on to endowed good ) ∗/
16 public Agent ( int type ) {
17 this . type = type ;
18 this . a l s oDe s i r ed = ( type + 1) % 3 ;
19
20 random = new Random( ) ;
21 r e s e t ( ) ;
22 }
23
24 public void r e s e t ( ) {
25 switch ( this . type ) {
26 case 0 :
27 goods [ 0 ] = 1 . 0 ;
28 goods [ 1 ] = 0 . 0 ;
29 goods [ 2 ] = 0 . 0 ;
30 break ;
31 case 1 :
32 goods [ 0 ] = 0 . 0 ;
33 goods [ 1 ] = 1 . 0 ;
34 goods [ 2 ] = 0 . 0 ;
35 break ;
36 case 2 :
37 goods [ 0 ] = 0 . 0 ;
38 goods [ 1 ] = 0 . 0 ;
39 goods [ 2 ] = 1 . 0 ;
40 }
41 c u r r e n t U t i l i t y = u t i l i t y ( ) ;
42 }
43
44 public double g e t U t i l i t y ( ) {
45 return c u r r e n t U t i l i t y ;
46 }
47
48 protected double u t i l i t y ( ) {
49 return u t i l i t y ( goods ) ;
50 }
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51
52 protected double u t i l i t y (double [ ] goods ) {
53 return Proce s s ing . min ( goods [ type ] , goods [ a l s oDe s i r ed ] ) ;
54 }
55
56 protected double u t i l i t y I f S u b t r a c t (double [ ] c ) {
57 double [ ] new goods = new double [ goods . l ength ] ;
58 for ( int i = 0 ; i < goods . l ength ; i++) {
59 new goods [ i ] = goods [ i ] − c [ i ] ;
60 }
61 return u t i l i t y ( new goods ) ;
62 }
63
64 protected double u t i l i t y I f A d d (double [ ] c ) {
65 double [ ] new goods = new double [ goods . l ength ] ;
66 for ( int i = 0 ; i < goods . l ength ; i++) {
67 new goods [ i ] = goods [ i ] + c [ i ] ;
68 }
69 return u t i l i t y ( new goods ) ;
70 }
71
72 public boolean propose ( Agent other , double e p s i l o n ) {
73 double proposa l [ ] = new double [ 3 ] ;
74 boolean improving = fa l se ;
75 // experiment : propose at random
76 i f ( random . nextDouble ( ) < e p s i l o n ) {
77 for ( int i = 0 ; i < 3 ; i++) {
78 proposa l [ i ] = − goods [ i ] + random . nextDouble ( ) ∗(

goods [ i ] + other . goods [ i ] ) ;
79 }
80 //don ’ t experiment : propose an improving trade i f that

i s p o s s i b l e
81 } else {
82 i f ( i s Improv ingTradePoss ib l e ( other ) ) {
83 while ( ! improving ) {
84 proposa l = generateProposa l ( other ) ;
85 i f ( u t i l i t y I f A d d ( proposa l ) > c u r r e n t U t i l i t y ) {
86 improving = true ;
87 }
88 }
89 } else {
90 return fa l se ; // can ’ t p o s s i b l y b e n e f i t from trade ;

immediately re turn f a l s e without attempting
trade

91 }
92 }
93 i f ( other . c on s id e r ( proposal , e p s i l o n ) ) {
94 trade ( other , proposa l ) ;
95 return true ;
96 } else {
97 return fa l se ;
98 }
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99 }
100
101 protected double [ ] g enerateProposa l ( Agent other ) {
102 double [ ] p roposa l = new double [ 3 ] ;
103 for ( int i = 0 ; i < 3 ; i++) {
104 i f ( i != mostPressingNeed ( ) ) {
105 proposa l [ i ] = − goods [ i ] + random . nextDouble ( ) ∗(

goods [ i ] + other . goods [ i ] ) ;
106 }
107 else { // opt im i sa t i on : negat ive proposa l f o r t h i s

c e r t a i n l y not improving
108 proposa l [ i ] = random . nextDouble ( ) ∗ other . goods [ i ] ;
109 }
110 }
111 return proposa l ;
112 }
113
114 protected int mostPressingNeed ( ) {
115 i f ( goods [ type ] > goods [ a l s oDe s i r ed ] ) {
116 return a l s oDe s i r ed ;
117 }
118 else {
119 return type ;
120 }
121 }
122
123 protected boolean i s Improv ingTradePoss ib l e ( Agent other ) {
124 i f ( goods [ type ] > goods [ a l s oDe s i r ed ] ) {
125 return other . goods [ a l s oDe s i r ed ] > 0 . 0 ;
126 } else {
127 return other . goods [ type ] > 0 . 0 ;
128 }
129 }
130
131 public boolean con s id e r (double [ ] g , double e p s i l o n ) {
132 i f ( random . nextDouble ( ) < e p s i l o n ) {
133 return true ;
134 } else {
135 i f ( u t i l i t y I f S u b t r a c t ( g ) > c u r r e n t U t i l i t y ) {
136 return true ;
137 }
138 else {
139 return fa l se ;
140 }
141 }
142 }
143
144 public void update ( ) {
145 c u r r e n t U t i l i t y = u t i l i t y ( ) ;
146 }
147
148 public void t rade ( Agent other , double change [ ] ) {
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149 addGoods ( change ) ;
150 other . subtractGoods ( change ) ;
151 }
152
153 public void addGoods (double [ ] g ) {
154 for ( int i = 0 ; i < goods . l ength ; i++) {
155 goods [ i ] += g [ i ] ;
156 }
157 update ( ) ;
158 }
159
160 public void subtractGoods (double [ ] g ) {
161 for ( int i = 0 ; i < goods . l ength ; i++) {
162 goods [ i ] −= g [ i ] ;
163 }
164 update ( ) ;
165 }
166
167
168 }

B.4. Experimenting Economy Code. The below code shows how
the above economy has been expanded to include the idea of experimen-
tation. We were able to utilise much of the functionality of the Cau-
tiousEconomy superclass. The key changes are to the round method
and to the counters which are now of type double for efficiency purposes
as we would otherwise need to cast integers to doubles to calculate ex-
perimentation scaling in each round.

Listing 4. Experimenting Economy source code
1 package com . por t e r . caut i ous . model ;
2
3 /∗∗ The c l a s s Economy c o n s i s t s o f a c o l l e c t i o n
4 ∗ o f independent Agents , who trade
5 ∗ v ia Cautious Trading . ∗/
6 public class ExperimentingEconomy extends CautiousEconomy {
7 public double acceptab le , propens i ty , decay ;
8 public double doubleEndDecay , doubleRoundCount ;
9 public double base l ineExper imentat ion ;

10 public int endDecay ;
11
12 /∗∗An Economy i s o f s i z e no . o f agents each
13 ∗ o f whom dea l with nGoods no . o f Goods .
14 ∗ @param s i z e Number o f agents in economy
15 ∗ @param nGoods Number o f goods in economy
16 ∗ @param a c c e p t a b l e l o s s p r o p o r t i o n The propor t ion o f

average i n i t i a l
17 ∗ abso lu t e u t i l i t y that i s i n i t i a l l y
18 ∗ acceptab l e to l o s e in a trade .
19 ∗ This d e c l i n e s u n t i l 0 at endDecay . Obviously the re are

schemes which are
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20 ∗ more a n a l y t i c a l l y s a t i s f y i n g , t h i s one i s a compromise
between t h i s and ease o f computation .

21 ∗ @param propens i ty to expe r iment How o f t en to
experiment

22 ∗ @param endDecay The po int at which exper imentat ion
s tops

23 ∗ ∗/
24 public ExperimentingEconomy ( int s i z e , int nGoods , double

a c c e p t a b l e l o s s p r o p o r t i o n , double
propens i ty to exper iment , int endDecay )

25 throws I l l ega lArgumentExcept ion {
26
27 super ( s i z e , nGoods ) ;
28 //Check va lues o f parameters
29 i f ( 0 . 0 > acceptab l e | | acceptab l e > 1 .0
30 | | 0 .0 > propens i ty to expe r iment | |

propens i ty to expe r iment > 1 .0
31 | | 0 > endDecay ) {
32 throw new I l l ega lArgumentExcept ion ( ” Values must be in

range ( 0 , 1 ] f o r Acceptable , Propens i ty and
p o s i t i v e i n t e g e r f o r endDecay” ) ;

33 }
34
35 this . p ropens i ty = propens i ty to expe r iment ;
36 this . endDecay = endDecay ;
37 this . doubleEndDecay = ( f loat ) endDecay ;
38
39 this . base l ineExper imentat ion =

ca l cu l a t eBase l i n eExpe r imenta t i on (
a c c e p t a b l e l o s s p r o p o r t i o n ) ;

40 }
41
42 /∗∗
43 ∗ No exper imentat ion v e r s i o n o f Economy , should perform

as Cautious Economy
44 ∗ @param s i z e
45 ∗ @param nGoods
46 ∗ @param acceptab l e
47 ∗ @param proport ion
48 ∗ @throws I l l ega lArgumentExcept ion
49 ∗/
50 public ExperimentingEconomy ( int s i z e , int nGoods ) throws

I l l ega lArgumentExcept ion {
51 this ( s i z e , nGoods , 0 . 0 , 1 . 0 , 0) ;
52 }
53
54 protected double ca l cu l a t eBase l i n eExpe r imenta t i on (double

a c c e p t a b l e l o s s p r o p o r t i o n ) {
55 return a c c e p t a b l e l o s s p r o p o r t i o n ∗

c a l c u l a t e A v e r a g e A b s o l u t e U t i l i t y ( ) ;
56 }
57
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58 protected double c a l c u l a t e A v e r a g e A b s o l u t e U t i l i t y ( ) {
59 double t o t a l = 0 . 0 ;
60 for ( int i = 0 ; i < s i z e ; i++) {
61 t o t a l += Math . abs ( agents . get ( i ) . c u r r e n t U t i l i t y ) ;
62 }
63 return t o t a l /(double ) s i z e ;
64 }
65
66 @Override
67 public void round ( ) {
68 double a l l owab l e expe r imenta t i on = this .

base l ineExper imentat ion ∗
69 ( 1 . 0 − doubleRoundCount/

doubleEndDecay ) ;
70 int r ;
71
72 for ( int i = 0 ; i < s i z e ; i++) {
73 r = gen . next Int ( s i z e ) ;
74
75 // get another agent at random
76 while ( r == i ) {
77 r = gen . next Int ( s i z e ) ;
78 }
79
80 i f ( this . round < endDecay && gen . nextDouble ( ) <

propens i ty ∗ ( 1 . 0 − doubleRoundCount/
doubleEndDecay ) ) {

81 i f ( agents . get ( i ) . propose ( agents . get ( r ) ,
a l l owab l e expe r imenta t i on ) ) {

82 t rade s++;
83 }
84 }
85 else {
86 i f ( agents . get ( i ) . propose ( agents . get ( r ) ) ) {
87 t rade s++;
88 }
89 }
90 per iod++;
91 }
92 round++;
93 doubleRoundCount++;
94 }
95
96 @Override
97 protected void r e se tCounter s ( ) {
98 super . r e s e tCounte r s ( ) ;
99 doubleRoundCount = 0 .0 f ;

100 doubleEndDecay = 0 .0 f ;
101 }
102 }


