9 research outputs found

    Recent advances and scope for sea farming in India

    Get PDF
    Although brackishwater prawn and fish culture was traditionally practiced for a long time in the country, efforts at sea farming are still in their infancy. During the past 15 years the Central Marine Fisheries Research Institute has developed various technologies for sea farming of mussels, pearl oysters, production of cultured pearls, edible oysters, clams, prawns, lobsters, seaweeds and more recently sea cucumbers and top shells. The paper outlines recent developments in these areas as well as in others like sea ranching of marine prawns and pearl oyster, and scope for enlarging sea farming activities including development of artificial reefs in India

    Biology, Fishery, Conservation and Management of Indian Ocean Tuna Fisheries

    Get PDF
    The focus of the study is to explore the recent trend of the world tuna fishery with special reference to the Indian Ocean tuna fisheries and its conservation and sustainable management. In the Indian Ocean, tuna catches have increased rapidly from about 179959 t in 1980 to about 832246 t in 1995. They have continued to increase up to 2005; the catch that year was 1201465 t, forming about 26% of the world catch. Since 2006 onwards there has been a decline in the volume of catches and in 2008 the catch was only 913625 t. The Principal species caught in the Indian Ocean are skipjack and yellowfin. Western Indian Ocean contributed 78.2% and eastern Indian Ocean 21.8% of the total tuna production from the Indian Ocean. The Indian Ocean stock is currently overfished and IOTC has made some recommendations for management regulations aimed at sustaining the tuna stock. Fishing operations can cause ecological impacts of different types: by catches, damage of the habitat, mortalities caused by lost or discarded gear, pollution, generation of marine debris, etc. Periodic reassessment of the tuna potential is also required with adequate inputs from exploratory surveys as well as commercial landings and this may prevent any unsustainable trends in the development of the tuna fishing industry in the Indian Ocean

    Near extinction of a highly fecund fish: The one that nearly got away

    No full text
    It is widely assumed that commercial fisheries of highly fecund species are particularly resilient to exploitation, and that, should populations become seriously diminished, economic constraints will force fishing to cease before biological extinction can occur. Indeed, among commercially exploited marine fishes there is not one confirmed global extinction. Here we document, using nonconventional means, a story that not only questions such assumptions but that should also alert us to how little we know about significant fisheries in some parts of the world. Our case study is that of the highly threatened Chinese bahaba. Bahaba taipingensis, a member of the Sciaenidae (the drums or croakers), and an example of a fecund and commercially important group of fishes that appears to be especially vulnerable to fishing. We also demonstrate that the careful use of informal, or traditional, information can provide a powerful, sometimes unique, means of identifying and assessing the status and history of species that might be quietly slipping away before we learn anything about them.link_to_subscribed_fulltex

    Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean

    No full text
    1. Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of 8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings. 2. Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar. 3. Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering. 4. Compared with historical catches, the Antarctic ("true") subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic. 5. Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic bluewhales
    corecore