135 research outputs found

    THE COMPLEMENTARY EFFECTS OF EMPATHY AND NONVERBAL COMMUNICATION TRAINING ON PERSUASION CAPABILITIES

    Get PDF
    This paper investigates the possible complementary effects that training in empathy and nonverbal communication may have on persuasion capabilities. The narrative considers implications from the literature and describes an exploratory study in which students, in a managerial setting, were trained in empathy and nonverbal communication. Subsequent evaluations of these students by faculty evaluators and the students themselves provide preliminary evidence that training in empathy, on the one hand, and nonverbal communication on the other can be effective, but concurrent training in both of these is superior to concentration in only one. This is the first research report which deals with such concurrent training and its impact on persuasion effectiveness in business communication

    Processing fluency scale development for consumer research

    Get PDF
    Processing fluency or the subjective experience of ease that consumers can experience when processing information is a prominent construct in consumer research. Despite its prevalence, however, its measurement has been inconsistent. The present research addresses this methodological gap in literature by developing and testing a scale for assessing the subjective experience of processing fluency. This scale demonstrates strong evidence of convergent and discriminant validity, reliability, and nomological validity across different processing fluency manipulations and marketing contexts. Use of this scale will allow marketing practitioners and academicians to consistently measure a psychological state that is known to have ubiquitous effects on downstream consumer outcomes including trust, attitude, and choice. Researchers can administer this four-item scale by having participants indicate their agreement (1 = strongly disagree, 7 = strongly agree) on whether a given marketing communication (e.g., ad copy) is (a) difficult to process, (b) difficult to read, (c) takes a long time to process, and (d) difficult to understand

    Experimental characterization of Gaussian quantum communication channels

    Full text link
    We present a full experimental characterization of continuous variable quantum communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states and the logarithmic negativity and the purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.Comment: 9 pages, 4 figures, submitted to Physical Review

    Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex

    Get PDF
    Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H) assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN, CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase, following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could be important for kinetochores switching into the correct conformation necessary for microtubule-attachment

    Highly non-Gaussian states created via cross-Kerr nonlinearity

    Full text link
    We propose a feasible scheme for generation of strongly non-Gaussian states using the cross-Kerr nonlinearity. The resultant states are highly non-classical states of electromagnetic field and exhibit negativity of their Wigner function, sub-Poissonian photon statistics, and amplitude squeezing. Furthermore, the Wigner function has a distinctly pronounced ``banana'' or ``crescent'' shape specific for the Kerr-type interactions, which so far was not demonstrated experimentally. We show that creating and detecting such states should be possible with the present technology using electromagnetically induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure

    Group Theory and Quasiprobability Integrals of Wigner Functions

    Full text link
    The integral of the Wigner function of a quantum mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0,1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric disks and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in Hilbert space carrying the positive discrete series representations of the algebra su(1,1)or so(2,1). The explicit relation between the spectra of operators associated with disks and circles with proportional radii, is given in terms of the dicrete variable Meixner polynomials.Comment: 11 pages, latex fil

    Carbon Nanotubes and Graphene as Additives in 3D Printing

    Get PDF
    3D printing is a revolutionary technology for the consumer and industrial markets. As the technology for 3D printing has expanded, the need for multi-materials that support fused deposition modeling and other forms of additive manufacturing is increasing. 3D printing filaments infused with carbon nanotubes and graphene are now commercially available, with the promise of producing conductive composites. This chapter explores some of the research, products, and challenges involved in bringing the next generation of functional printing materials to the consumer market

    Quantum inference of states and processes

    Get PDF
    The maximum-likelihood principle unifies inference of quantum states and processes from experimental noisy data. Particularly, a generic quantum process may be estimated simultaneously with unknown quantum probe states provided that measurements on probe and transformed probe states are available. Drawbacks of various approximate treatments are considered.Comment: 7 pages, 4 figure

    Non-maximally entangled states: production, characterization and utilization

    Get PDF
    Using a spontaneous-downconversion photon source, we produce true non-maximally entangled states, i.e., without the need for post-selection. The degree and phase of entanglement are readily tunable, and are characterized both by a standard analysis using coincidence minima, and by quantum state tomography of the two-photon state. Using the latter, we experimentally reconstruct the reduced density matrix for the polarization. Finally, we use these states to measure the Hardy fraction, obtaining a result that is 122σ122 \sigma from any local-realistic result.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode
    corecore