117 research outputs found

    Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiases amenable to preventive chemotherapy

    Get PDF
    The current mainstay for control of the four major helminth diseases in humans (lymphatic filariasis, onchocerciasis, soil-transmitted helminthiases and schistosomiasis) is with preventive chemotherapy by mass administration of key anthelminthics. Following the London Declaration on Neglected Tropical Diseases in 2012, a roadmap for the elimination and control of these helminthiases by 2020 has been devised. With expected declines in prevalence and intensity of these infections, there is urgent need for implementing more sensitive, high-throughput and cost-effective diagnostic tools. Currently available diagnostic approaches for surveying, monitoring and evaluating helminth control programmes are based on microscopical observation of eggs/larvae, and/or detection of antibodies or parasite antigens in stool, urine or blood; all relatively low-throughput and of limited sensitivity and specificity. Newly proposed approaches for helminthiases diagnosis include the nucleic acid-based methods of (multiplex) real-time polymerase chain reaction assays, loop-mediated isothermal amplification and recombinase polymerase amplification. However, as well as sensitivity/specificity evaluation, their comparison to current β€˜gold standard’ diagnostics and future application in individual-/community-based diagnosis, or in xenomonitoring requires consideration of relative costs, agreement of standard methods and strategic interpretation of resulting data before control/elimination programmes might best utilize molecular diagnostics to inform decision making. We review current nucleic-acid-based molecular diagnostic methods and highlight the needs and future research required to refine these tools for monitoring and evaluation of control and elimination programmes for four major human helminthiases

    An update on non-invasive urine diagnostics for human-infecting parasitic helminths: what more could be done and how?

    Get PDF
    Reliable diagnosis of human helminth infection(s) is essential for ongoing disease surveillance and disease elimination. Current WHO-recommended diagnostic assays are unreliable in low-endemic near-elimination settings and typically involve the invasive, onerous and potentially hazardous sampling of bodily fluids such as stool and blood, as well as tissue via biopsy. In contrast, diagnosis by use of non-invasive urine sampling is generally painless, more convenient and low risk. It negates the need for specialist staff, can usually be obtained immediately upon request and is better accepted by patients. In some instances, urine-based diagnostic assays have also been shown to provide a more reliable diagnosis of infection when compared to traditional methods that require alternative and more invasive bodily samples, particularly in low-endemicity settings. Given these relative benefits, we identify and review current research literature to evaluate whether non-invasive urine sampling is currently exploited to its full potential in the development of diagnostic tools for human helminthiases. Though further development, assessment and validation is needed before their routine use in control programmes, low-cost, rapid and reliable assays capable of detecting transrenal helminth-derived antigens and cell-free DNA show excellent promise for future use at the point-of-care in high-, medium- and even low-endemicity elimination settings

    A systematic review with epidemiological update of male genital schistosomiasis (MGS): A call for integrated case management across the health system in sub-Saharan Africa.

    Get PDF
    Male genital schistosomiasis (MGS) is a gender specific manifestation of urogenital schistosomiasis (UGS) first described in 1911 by Madden in Egypt. Today, while affecting millions of men and boys worldwide, MGS receives insufficient attention, especially in sub-Saharan Africa (SSA). To provide a systematic review with an epidemiological update of MGS, we inspected both online and hardcopy resources in our appraisal. A total of 147 articles were eventually identified, only 31 articles were exclusively focused on MGS with original or targeted research. From these, we discuss pertinent clinico-pathological features of MGS, highlight the possible connection and interplay with HIV, and assess current diagnostic techniques alongside consideration of their use and application in SSA. To appreciate the burden of MGS more fully, especially in endemic areas, there is a clear need for better surveillance and longitudinal population research to investigate the best point-of-care (POC) diagnostic and its performance through time. Furthermore, to optimise individual case management, exploration of alternative praziquantel dosing regimens is needed for MGS in men with or without HIV co-infection

    X-ray structure of <i>Fasciola hepatica</i> Sigma class glutathione transferase 1 reveals a disulfide bond to support stability in gastro-intestinal environment

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData delivery: The structure factors and the refined coordinates of the FhGST-S1 structures have been deposited with the Protein Data Bank and have the access codes 2WB9 and 2WDU.Sigma class GST (Prostaglandin D synthase), FhGST-S1, is present in the excretory–secretory products (ES) of the liver fluke parasite Fasciola hepatica as cargo of extracellular vesicles (EVs) released by the parasite. FhGST-S1 has a well characterised role in the modulation of the immune response; a key fluke intercession that allows for establishment and development within their hosts. We have resolved the three-dimensional structure of FhGST-S1 in complex with its co-factor glutathione, in complex with a glutathione-cysteine adduct, and in a glutathione disulfide complex in order to initiate a research pipeline to mechanistically understand how FhGST-S1 functions within the host environment and to rationally design selective inhibitors. The overall fold of FhGST-S1 shows high structural similarity to other Sigma class GSTs. However, a unique interdomain disulfide bond was found in the FhGST-S1 which could stabilise the structure within the host gastro-intestinal environment. The position of the two domains of the protein with respect to each other is seen to be crucial in the formation of the active site cleft of the enzyme. The interdomain disulfide bond raises the possibility of oxidative regulation of the active site of this GST protein.European Union FP6Biotechnology and Biological Sciences Research Council (BBSRC)NRN WalesUniversity of Exete

    In vitro biomarker discovery in the parasitic flatworm Fasciola hepatica for monitoring chemotherapeutic treatment

    Get PDF
    The parasitic flatworm Fasciola hepatica is a global food security risk. With no vaccines, the sustainability of triclabendazole (TCBZ) is threatened by emerging resistance. F. hepatica excretory/secretory (ES) products can be detected in host faeces and used to estimate TCBZ success and failure. However, there are no faecal based molecular diagnostics dedicated to assessing drug failure or resistance to TCBZ in the field. Utilising in vitro maintenance and sub-proteomic approaches two TCBZ stress ES protein response fingerprints were identified: markers of non-killing and lethal doses. This study provides candidate protein/peptide biomarkers to validate for detection of TCBZ failure and resistance

    Proteomic profiling and protein identification by MALDI-TOF mass spectrometry in unsequenced parasitic nematodes.

    Get PDF
    Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This study demonstrates the cost-effective use of available EST databases and inexpensive, accessible MALDI-TOF MS in conjunction with PMF for reliable protein identification in unsequenced organisms

    Intestinal schistosomiasis in Uganda at high altitude (>1400 m): malacological and epidemiological surveys on Mount Elgon and in Fort Portal crater lakes reveal extra preventive chemotherapy needs

    Get PDF
    Background Intestinal schistosomiasis is of public health importance in Uganda but communities living above 1400 m are not targeted for control as natural transmission is thought unlikely. To assess altitudinal boundaries and at-risk populations, conjoint malacological and epidemiological surveys were undertaken on Mount Elgon (1139 m–3937 m), in Fort Portal crater lakes and in the Rwenzori Mountains (1123 m–4050 m). Methods Seventy freshwater habitats [Mount Elgon (37), Fort Portal crater lakes (23), Rwenzori Mountains (8) and Lake Albert (2)] were inspected for Biomphalaria species. Water temperature, pH and conductivity were recorded. A parasitological examination of 756 schoolchildren [Mount Elgon (300), Fort Portal crater lakes (456)] by faecal microscopy of duplicate Kato-Katz smears from two consecutive stool samples was bolstered by antigen (urine-CCA dipstick) and antibody (SEA-ELISA) diagnostic assays. Results Biomphalaria spp. was found up to 1951 m on Mount Elgon and 1567 m in the Fort Portal crater lakes. Although no snail from Mount Elgon shed cercariae, molecular analysis judged 7.1% of snails sampled at altitudes above 1400 m as having DNA of Schistosoma mansoni; in Fort Portal crater lakes three snails shed schistosome cercariae. Prevalence of intestinal schistosomiasis as measured in schoolchildren by Kato-Katz (Mount Elgon = 5.3% v. Fort Portal crater lakes = 10.7%), CCA urine-dipsticks (18.3% v. 34.4%) and SEA-ELISA (42.3% v. 63.7%) showed negative associations with increasing altitude with some evidence of infection up to 2000 m. Conclusions Contrary to expectations, these surveys clearly show that natural transmission of intestinal schistosomiasis occurs above 1400 m, possibly extending up to 2000 m. Using spatial epidemiological predictions, this now places some extra six million people at-risk, denoting an expansion of preventive chemotherapy needs in Uganda

    Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiases amenable to preventive chemotherapy

    Get PDF
    The current mainstay for control of the four major helminth diseases in humans (lymphatic filariasis, onchocerciasis, soil-transmitted helminthiases and schistosomiasis) is with preventive chemotherapy by mass administration of key anthelminthics. Following the London Declaration on Neglected Tropical Diseases in 2012, a roadmap for the elimination and control of these helminthiases by 2020 has been devised. With expected declines in prevalence and intensity of these infections, there is urgent need for implementing more sensitive, high-throughput and cost-effective diagnostic tools. Currently available diagnostic approaches for surveying, monitoring and evaluating helminth control programmes are based on microscopical observation of eggs/larvae, and/or detection of antibodies or parasite antigens in stool, urine or blood; all relatively low-throughput and of limited sensitivity and specificity. Newly proposed approaches for helminthiases diagnosis include the nucleic acid-based methods of (multiplex) real-time polymerase chain reaction assays, loop-mediated isothermal amplification and recombinase polymerase amplification. However, as well as sensitivity/specificity evaluation, their comparison to current β€˜gold standard’ diagnostics and future application in individual-/community-based diagnosis, or in xenomonitoring requires consideration of relative costs, agreement of standard methods and strategic interpretation of resulting data before control/elimination programmes might best utilize molecular diagnostics to inform decision making. We review current nucleic-acid-based molecular diagnostic methods and highlight the needs and future research required to refine these tools for monitoring and evaluation of control and elimination programmes for four major human helminthiases

    Towards delineating functions within the fasciola secreted cathepsin L protease family by integrating in vivo based sub-proteomics and phylogenetics

    Get PDF
    BACKGROUND: Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also the most promising vaccine candidates, the cathepsin L (Cat L) protease family. METHODOLOGY/PRINCIPAL FINDINGS: The sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples. CONCLUSIONS/SIGNIFICANCE: We have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase
    • …
    corecore