3,055 research outputs found
"The Fed's Real Reaction Function: Monetary Policy, Inflation, Unemployment, Inequality-and Presidential Politics"
Using a VAR model of the American economy from 1984 to 2003, we find that, contrary to official claims, the Federal Reserve does not target inflation or react to "inflation signals." Rather, the Fed reacts to the very "real" signal sent by unemployment, in a way that suggests that a baseless fear of full employment is a principal force behind monetary policy. Tests of variations in the workings of a Taylor Rule, using dummy variable regressions, on data going back to 1969 suggest that after 1983 the Federal Reserve largely ceased reacting to inflation or high unemployment, but continued to react when unemployment fell "too low." Further, we find that monetary policy (measured by the yield curve) has significant causal impact on pay inequality-a domain where the Fed refuses responsibility. Finally, we test whether Federal Reserve policy has exhibited a pattern of partisan bias in presidential election years, with results that suggest the presence of such bias, after controlling for the effects of inflation and unemployment.
Saturation mutagenesis reveals manifold determinants of exon definition.
To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation mutagenesis of a 51-nt internal exon in a three-exon minigene. All possible single and tandem dinucleotide substitutions were surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of all predicted secondary structural elements, only a single 15-nt stem-loop showed a strong correlation with splicing, acting negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon definition as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding protein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular collection of binding proteins
The Orbiter Stability Experiment on STS-40
The Orbiter Stability Experiment (OSE) was developed to evaluate the steadiness of the STS Orbiter as a potential platform for instrumentation that would image the Sun in its extreme ultraviolet and soft X-ray radiations. We were interested in any high frequency motions of the Orbiter's orientation due to normal operations and manned activities. Preliminary results are presented of the observations. Other than the expected slow motion of the Orbiter within the specified angular deadband of 0.1 degrees during the observations, it was found that high frequency (above 1 Hz) angular motions (jitter) were not detectable at the 0.25 arc sec detection limit of the most sensitive detector, for most of the period of observation. No high frequency motions were recorded during intervals that were identified with vernier thruster firings. However, one short interval with detectable spectral power to a frequency of 10 Hz has been found to date. It has not yet been correlated with a particular activity going on at the time. The results of the observations may also be of value in assessing perturbations to the Orbiter's micro-gravity environment produced by normal operations
Gene functional similarity search tool (GFSST)
BACKGROUND: With the completion of the genome sequences of human, mouse, and other species and the advent of high throughput functional genomic research technologies such as biomicroarray chips, more and more genes and their products have been discovered and their functions have begun to be understood. Increasing amounts of data about genes, gene products and their functions have been stored in databases. To facilitate selection of candidate genes for gene-disease research, genetic association studies, biomarker and drug target selection, and animal models of human diseases, it is essential to have search engines that can retrieve genes by their functions from proteome databases. In recent years, the development of Gene Ontology (GO) has established structured, controlled vocabularies describing gene functions, which makes it possible to develop novel tools to search genes by functional similarity. RESULTS: By using a statistical model to measure the functional similarity of genes based on the Gene Ontology directed acyclic graph, we developed a novel Gene Functional Similarity Search Tool (GFSST) to identify genes with related functions from annotated proteome databases. This search engine lets users design their search targets by gene functions. CONCLUSION: An implementation of GFSST which works on the UniProt (Universal Protein Resource) for the human and mouse proteomes is available at GFSST Web Server. GFSST provides functions not only for similar gene retrieval but also for gene search by one or more GO terms. This represents a powerful new approach for selecting similar genes and gene products from proteome databases according to their functions
Investigation of Magnesium Cation-proton Exchange with Transmembrane Electrostatically Localized Protons (TELP) at a Liquid-membrane Interface: Fundamental to Bioenergetics
The Lee transmembrane electrostatic proton localization (TELP) theory is a revolutionary scientific theory that has successfully explained decades long-standing quandary in the field of bioenergetics in regards to ATP synthesis in biological systems, specifically alkalophilic bacteria. This study provides experimental support for the TELP theory by further demonstrating evidence of a localized proton layer existing at the liquid-membrane interface in a simulated biological membrane apparatus. Whilst monovalent cations have been studied extensively, divalent cation exchange has not been studied experimentally.
A previous study determined equilibrium constant for Na+ and K+ to exchange with localized H+ layer to be (5.07 ± 0.46) x 10-8 and (6.93 ± 0.91) x 10-8 respectively. We discovered that an equilibrium exchange occurs at 0.85 mM Mg2+ concentration. The findings here contributed to the successful determination of the equilibrium constant between Mg2+ and the localized H+ layer to be (1.56 ± 0.46) x 10-5. The equilibrium constant, much smaller than one, thus provides support for Lee’s TELP model since so many more Mg2+ in the bulk liquid phase that are required to even partially delocalize just a single H+ at the liquid-membrane interface. These results are relevant to further understand how water can act as a proton conductor for proton coupling energy transduction and the implications of different biological organisms’ salinity tolerance.https://digitalcommons.odu.edu/gradposters2022_sciences/1012/thumbnail.jp
g=1 for Dirichlet 0-branes
Dirichlet 0-branes, considered as extreme Type IIA black holes with spin
carried by fermionic hair, are shown to have the anomalous gyromagnetic ratio
g=1, consistent with their interpretation as Kaluza-Klein modes.Comment: 13 pages, Late
The Extreme Kerr Throat Geometry: A Vacuum Analog of AdS_2 x S^2
We study the near horizon limit of a four dimensional extreme rotating black
hole. The limiting metric is a completely nonsingular vacuum solution, with an
enhanced symmetry group SL(2,R) x U(1). We show that many of the properties of
this solution are similar to the AdS_2 x S^2 geometry arising in the near
horizon limit of extreme charged black holes. In particular, the boundary at
infinity is a timelike surface. This suggests the possibility of a dual quantum
mechanical description. A five dimensional generalization is also discussed.Comment: 21 page
Dabrafenib, alone or in combination with trametinib, in BRAF V600–mutated pediatric Langerhans cell histiocytosis
Langerhans cell histiocytosis (LCH) is a rare, heterogenous, neoplastic disorder primarily affecting children. BRAF mutations have been reported in >50% of patients with LCH. The selective BRAF inhibitor, dabrafenib, in combination with the MEK1/2 inhibitor, trametinib, has been approved in select BRAF V600–mutant solid tumors. Two open-label phase 1/2 studies were conducted in pediatric patients with BRAF V600–mutant, recurrent/refractory malignancies treated with dabrafenib monotherapy (CDRB436A2102; NCT01677741) or dabrafenib plus trametinib (CTMT212X2101; NCT02124772). The primary objectives of both studies were to determine safe and tolerable doses that achieve similar exposure to the approved doses for adults. Secondary objectives included safety, tolerability, and preliminary antitumor activity. Thirteen and 12 patients with BRAF V600–mutant LCH received dabrafenib monotherapy and in combination with trametinib, respectively. Investigator-assessed objective response rates per Histiocyte Society criteria were 76.9% (95% confidence interval [CI], 46.2-95.0) and 58.3% (95% CI, 27.7-84.8) in the monotherapy and combination studies, respectively. More than 90% of responses were ongoing at study completion. The most common treatment-related adverse events (AEs) were vomiting and increased blood creatinine with monotherapy and pyrexia, diarrhea, dry skin, decreased neutrophil count, and vomiting with combination therapy. Two patients each discontinued treatment with monotherapy and combination therapy because of AEs. Overall, dabrafenib monotherapy or in combination with trametinib demonstrated clinical efficacy and manageable toxicity in relapsed/refractory BRAF V600–mutant pediatric LCH, with most responses ongoing. Safety was consistent with that reported in other pediatric and adult conditions treated with dabrafenib plus trametinib
Renewable Energy Opportunities at Fort Sill, Oklahoma
This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010
Prognostic Values of microRNAs in Colorectal Cancer
The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs (hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer
- …