3,952 research outputs found

    Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices

    Get PDF
    Donor−acceptor binding of the π-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT^(4+)) with the π-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519−525; Nature 2007, 445, 414−417) and nanoelectromechanical systems. The rate of CBPQT^(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT^4+ ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of ~10^9−7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments

    An Integrated Systems Approach to the Development of Winter Maintenance / Management Systems

    Get PDF
    Winter road maintenance operations require many complex strategic and operational planning decisions. The five primary problems involved in this intricate planning procedure include locating depots, designing sectors, routing service vehicles, scheduling vehicles, and configuring the vehicle fleet. The complexity involved in each of these decisions has resulted mainly in research that approaches each of the problems separately and sequentially, which can lead to isolated and suboptimal solutions. After discussing the complexity of the relaxed subproblems that would need to be solved to optimize the intricate winter maintenance operations, the research turns to a heuristic approach to more feasibly address the interrelated problems. This report subsequently presents a systematic, heuristic-based optimization approach to integrate the winter road maintenance planning decisions for depot location, sector design, vehicle route design, vehicle scheduling, and fleet configuration. The approach presented is illustrated through an example of public sector winter road maintenance planning for a rural transportation network in Boone County, Missouri. When applied to the real-world winter road maintenance planning problems for Boone County, the methodology delivered very promising results. The solution methodology successfully achieves the objective of a more integrated and less sequential approach to the problems considered. The integrated solution would allow the Missouri Department of Transportation (MoDOT) to maintain the same high level of service with significantly fewer resources. The results indicate that this methodology is a successful step towards solving realistic multiple-depot problems involving heterogeneous winter maintenance fleets

    Elevated osteoprotegerin is associated with abnormal ankle brachial indices in patients infected with HIV: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients infected with HIV have an increased risk for accelerated atherosclerosis. Elevated levels of osteoprotegerin, an inflammatory cytokine receptor, have been associated with a high incidence of cardiovascular disease (including peripheral arterial disease, or PAD), acute coronary syndrome, and cardiovascular mortality. The objective of this study was to determine whether PAD is prevalent in an HIV-infected population, and to identify an association with HIV-specific and traditional cardiovascular risk factors, as well as levels of osteoprotegerin.</p> <p>Methods</p> <p>One hundred and two patients infected with HIV were recruited in a cross-sectional study. To identify the prevalence of PAD, ankle-brachial indices (ABIs) were measured. Four standard ABI categories were utilized: ≀ 0.90 (definite PAD); 0.91-0.99 (borderline); 1.00-1.30 (normal); and >1.30 (high). Medical history and laboratory measurements were obtained to determine possible risk factors associated with PAD in HIV-infected patients.</p> <p>Results</p> <p>The prevalence of PAD (ABI ≀ 0.90) in a young HIV-infected population (mean age: 48 years) was 11%. Traditional cardiovascular risk factors, including advanced age and previous cardiovascular history, as well as elevated C-reactive protein levels, were associated with PAD. Compared with patients with normal ABIs, patients with high ABIs had significantly elevated levels of osteoprotegerin [1428.9 (713.1) pg/ml vs. 3088.6 (3565.9) pg/ml, respectively, p = 0.03].</p> <p>Conclusions</p> <p>There is a high prevalence of PAD in young HIV-infected patients. A number of traditional cardiovascular risk factors and increased osteoprotegerin concentrations are associated with abnormal ABIs. Thus, early screening and aggressive medical management for PAD may be warranted in HIV-infected patients.</p

    Observation of two-dimensional Fermi surface and Dirac dispersion in YbMnSb2_2

    Full text link
    We present the crystal structure, electronic structure, and transport properties of the material YbMnSb2_2, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a 2D Fermi surface arising from a Dirac dispersion, consistent with the predictions of density functional theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.Comment: 8 pages, 6 figure

    Spiers Memorial Lecture: Molecular mechanics and molecular electronics

    Get PDF
    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable [2]rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits

    Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    Get PDF
    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O_3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O_3, field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B_(1−25) (a shortened version of human SP-B) at the air−liquid interface. We also present studies of the interfacial oxidation of SP-B_(1−25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B_(1−25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B_(1−25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress

    Culex tarsalis is a competent vector species for Cache Valley virus

    Get PDF
    Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially sheep. The importance of CVV in human public health has recently increased because of the report of severe neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species responsible for the transmission of CVV from viremic vertebrate hosts to humans. Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx. pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from infected Cx. tarsalis provided evidence supporting its role as a competent vector. Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis as a competent vector

    Hamiltonian analysis of Poincar\'e gauge theory scalar modes

    Full text link
    The Hamiltonian constraint formalism is used to obtain the first explicit complete analysis of non-trivial viable dynamic modes for the Poincar\'e gauge theory of gravity. Two modes with propagating spin-zero torsion are analyzed. The explicit form of the Hamiltonian is presented. All constraints are obtained and classified. The Lagrange multipliers are derived. It is shown that a massive spin-0−0^- mode has normal dynamical propagation but the associated massless 0−0^- is pure gauge. The spin-0+0^+ mode investigated here is also viable in general. Both modes exhibit a simple type of ``constraint bifurcation'' for certain special field/parameter values.Comment: 28 pages, LaTex, submitted to International Journal of Modern Physics
    • 

    corecore