32,458 research outputs found

    Frequency domain laser velocimeter signal processor: A new signal processing scheme

    Get PDF
    A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a smart instrument that is able to configure itself, based on the characteristics of the input signals, for optimum measurement accuracy. The signal processor is composed of a high-speed 2-bit transient recorder for signal capture and a combination of adaptive digital filters with energy and/or zero crossing detection signal processing. The system is designed to accept signals with frequencies up to 100 MHz with standard deviations up to 20 percent of the average signal frequency. Results from comparative simulation studies indicate measurement accuracies 2.5 times better than with a high-speed burst counter, from signals with as few as 150 photons per burst

    Structure-property study of keto-ether polyimides

    Get PDF
    As part of an on-going effort to develop an understanding of how changes in the chemical structure affect polymer properties, an empirical study was performed on polyimides containing only ether and/or carbonyl connecting groups in the polymer backbone. During the past two decades the structure-property relationships in linear aromatic polyimides have been extensively investigated. More recently, work has been performed to study the effect of isomeric attachment of keto-ether polyimides on properties such as glass transition temperature and solubility. However, little work has been reported on the relation of polyimide structure to mechanical properties. The purpose of this study was to determine the effect of structural changes in the backbone of keto-ether polyimides on their mechanical properties, specifically, unoriented thin film tensile properties. This study was conducted in two stages. The purpose of the initial stage was to examine the physical and mechanical properties of a representative group (four) of polyimide systems to determine the optimum solvent and cure cycle requirements. These optimum conditions were then utilized in the second stage to prepare films of keto-ether polyimides which were evaluated for mechanical and physical properties. All of the polyimides were prepared using isomers of oxydianiline (ODA) and diaminobenzophenone (DABP) in combination with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA)

    Nucleation of colloids and macromolecules: does the nucleation pathway matter?

    Full text link
    A recent description of diffusion-limited nucleation based on fluctuating hydrodynamics that extends classical nucleation theory predicts a very non-classical two-step scenario whereby nucleation is most likely to occur in spatially-extended, low-amplitude density fluctuations. In this paper, it is shown how the formalism can be used to determine the maximum probability of observing \emph{any} proposed nucleation pathway, thus allowing one to address the question as to their relative likelihood, including of the newly proposed pathway compared to classical scenarios. Calculations are presented for the nucleation of high-concentration bubbles in a low-concentration solution of globular proteins and it is found that the relative probabilities (new theory compared to classical result) for reaching a critical nucleus containing NcN_c molecules scales as e−Nc/3e^{-N_c/3} thus indicating that for all but the smallest nuclei, the classical scenario is extremely unlikely.Comment: 7 pages, 5 figure

    Intrinsic optical dichroism in the chiral superconducting state of Sr2_{2}RuO4_{4}

    Full text link
    We present an analysis of the Hall conductivity σxy(ω,T)\sigma_{xy}(\omega, T) in time reversal symmetry breaking states of exotic superconductors. We find that the dichroic signal is non-zero in systems with inter-band order parameters. This new intrinsic mechanism may explain the Kerr effect observed in strontium ruthenate and possibly other superconductors. We predict coherence factor effects in the temperature dependence of the imaginary part of the ac Hall conductivity Imσxy(ω,T) Im\sigma_{xy}(\omega, T), which can be tested experimentally.Comment: 4+ pages, 4 figures, published versio

    The Kerr rotation in the unconventional superconductor Sr2_2RuO4_4

    Full text link
    The interpretation of Kerr rotation measurements in the superconducting phase of Sr2_2RuO4_4 is a controversial topic. Both intrinsic and extrinsic mechanisms have been proposed, and it has been argued that the intrinsic response vanishes by symmetry. We focus on the intrinsic contribution and clarify several conflicting results in the literature. On the basis of symmetry considerations and detailed calculations we show that the intrinsic Kerr signal is not forbidden in a general multi- band system but has a rich structure in the near infrared regime. We distinguish different optical transitions determined by the superconducting gap (far infrared) and the inter orbital coupling of the normal state (near infrared). We argue that the low frequency transitions do not contribute to the Hall conductivity while only the inter-orbital transitions in the near infrared regime contribute. Finally, we discuss the difficulties to connect the calculations for the optical Hall conductivity to the experimental measurement of the Kerr angle. We will compare different approximations which might lead to conflicting results.Comment: 9 pages, 8 figures, 1 tabl

    Gap Nodes and Time Reversal Symmetry Breaking in Strontium Ruthenate

    Full text link
    We study the superconducting state of Sr2_2RuO4_4 on the bases of a phenomenological but orbital specific description of the electron-electron attraction and a realistic quantitative account of the electronic structure in the normal state. We found that a simple model which features both `in plane' and `out of plane' coupling with strengths U∥=40U_{\parallel}=40meV and U⊥=48U_{\perp}=48meV respectively reproduced the experimentally observed power law behaviour of the low temperature specific heat Cv(T)C_v(T), superfluid density ns(T)n_s(T) and thermal conductivity in quantitative detail. Moreover, it predicts that the quasi-particle spectrum on the γ\gamma -sheet is fully gaped and the corresponding order parameter breaks the time reversal symmetry. We have also investigated the stability of this model to inclusion of further interaction constants in particular %those which describe `proximity coupling' between orbitals contributing to the γ\gamma sheet of the Fermi surface and the α\alpha and β\beta sheets. We found that the predictions of the model are robust under such changes. Finally, we have incorporated a description of weak disorder into the model and explored some of its consequences. For example we demonstrated that the disorder has a more significant effect on the ff-wave component of the order parameter than on the p-wave one.Comment: EPJ B submitte

    Stability of the Ground State of a Harmonic Oscillator in a Monochromatic Wave

    Full text link
    Classical and quantum dynamics of a harmonic oscillator in a monochromatic wave is studied in the exact resonance and near resonance cases. This model describes, in particular, a dynamics of a cold ion trapped in a linear ion trap and interacting with two lasers fields with close frequencies. Analytically and numerically a stability of the ``classical ground state'' (CGS) -- the vicinity of the point (x=0,p=0x=0, p=0) -- is analyzed. In the quantum case, the method for studying a stability of the quantum ground state (QGS) is suggested, based on the quasienergy representation. The dynamics depends on four parameters: the detuning from the resonance, δ=ℓ−Ω/ω\delta=\ell-\Omega/\omega, where Ω\Omega and ω\omega are, respectively, the wave and the oscillator's frequencies; the positive integer (resonance) number, ℓ\ell; the dimensionless Planck constant, hh, and the dimensionless wave amplitude, ϵ\epsilon. For δ=0\delta=0, the CGS and the QGS are unstable for resonance numbers ℓ=1,2\ell=1, 2. For small ϵ\epsilon, the QGS becomes more stable with increasing δ\delta and decreasing hh. When ϵ\epsilon increases, the influence of chaos on the stability of the QGS is analyzed for different parameters of the model, ℓ\ell, δ\delta and hh.Comment: RevTeX, 38 pages, 24 figure

    An Ontology-based Image Repository for a Biomedical Research Lab

    Get PDF
    We have developed a prototype web-based database for managing images acquired during experiments in a biomedical research lab studying the factors controlling cataract development. Based on an evolving ontology we are developing for describing the experimental data and protocols used in the lab, the image repository allows lab members to organize image data by multiple attributes. The use of an ontology for developing this and other tools will facilitate intercommunication among tools, and eventual data sharing with other researchers

    State-space based mass event-history model I: many decision-making agents with one target

    Full text link
    A dynamic decision-making system that includes a mass of indistinguishable agents could manifest impressive heterogeneity. This kind of nonhomogeneity is postulated to result from macroscopic behavioral tactics employed by almost all involved agents. A State-Space Based (SSB) mass event-history model is developed here to explore the potential existence of such macroscopic behaviors. By imposing an unobserved internal state-space variable into the system, each individual's event-history is made into a composition of a common state duration and an individual specific time to action. With the common state modeling of the macroscopic behavior, parametric statistical inferences are derived under the current-status data structure and conditional independence assumptions. Identifiability and computation related problems are also addressed. From the dynamic perspectives of system-wise heterogeneity, this SSB mass event-history model is shown to be very distinct from a random effect model via the Principle Component Analysis (PCA) in a numerical experiment. Real data showing the mass invasion by two species of parasitic nematode into two species of host larvae are also analyzed. The analysis results not only are found coherent in the context of the biology of the nematode as a parasite, but also include new quantitative interpretations.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS189 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks

    Get PDF
    The evolution of the magnetorotational instability (MRI) during the transition from outburst to quiescence in a dwarf nova disk is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted for the analysis, so that the efficiency of angular momentum transport is studied in a small local patch of the disk: this is usually referred as to a one-zone model. To take account of the low ionization fraction of the disk, the induction equation includes both ohmic dissipation and the Hall effect. We induce a transition from outburst to quiescence by an instantaneous decrease of the temperature. The evolution of the MRI during the transition is found to be very sensitive to the temperature of the quiescent disk. As long as the temperature is higher than a critical value of about 2000 K, MHD turbulence and angular momentum transport is sustained by the MRI. However, MHD turbulence dies away within an orbital time if the temperature falls below this critical value. In this case, the stress drops off by more than 2 orders of magnitude, and is dominated by the Reynolds stress associated with the remnant motions from the outburst. The critical temperature depends slightly on the distance from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap
    • …
    corecore