344 research outputs found

    Multiple imputation methods for longitudinal blood pressure measurements from the Framingham Heart Study

    Get PDF
    Missing data are a great concern in longitudinal studies, because few subjects will have complete data and missingness could be an indicator of an adverse outcome. Analyses that exclude potentially informative observations due to missing data can be inefficient or biased. To assess the extent of these problems in the context of genetic analyses, we compared case-wise deletion to two multiple imputation methods available in the popular SAS package, the propensity score and regression methods. For both the real and simulated data sets, the propensity score and regression methods produced results similar to case-wise deletion. However, for the simulated data, the estimates of heritability for case-wise deletion and the two multiple imputation methods were much lower than for the complete data. This suggests that if missingness patterns are correlated within families, then imputation methods that do not allow this correlation can yield biased results

    Identifying susceptibility genes by using joint tests of association and linkage and accounting for epistasis

    Get PDF
    Simulated Genetic Analysis Workshop14 data were analyzed by jointly testing linkage and association and by accounting for epistasis using a candidate gene approach. Our group was unblinded to the "answers." The 48 single-nucleotide polymorphisms (SNPs) within the six disease loci were analyzed in addition to five SNPs from each of two non-disease-related loci. Affected sib-parent data was extracted from the first 10 replicates for populations Aipotu, Kaarangar, and Danacaa, and analyzed separately for each replicate. We developed a likelihood for testing association and/or linkage using data from affected sib pairs and their parents. Identical-by-descent (IBD) allele sharing between sibs was explicitly modeled using a conditional logistic regression approach and incorporating a covariate that represents expected IBD allele sharing given the genotypes of the sibs and their parents. Interactions were accounted for by performing likelihood ratio tests in stages determined by the highest order interaction term in the model. In the first stage, main effects were tested independently, and in subsequent stages, multilocus effects were tested conditional on significant marginal effects. A reduction in the number of tests performed was achieved by prescreening gene combinations with a goodness-of-fit chi square statistic that depended on mating-type frequencies. SNP-specific joint effects of linkage and association were identified for loci D1, D2, D3, and D4 in multiple replicates. The strongest effect was for SNP B03T3056, which had a median p-value of 1.98 × 10(-34). No two- or three-locus effects were found in more than one replicate

    Segregation and linkage analysis for longitudinal measurements of a quantitative trait

    Get PDF
    We present a method for using slopes and intercepts from a linear regression of a quantitative trait as outcomes in segregation and linkage analyses. We apply the method to the analysis of longitudinal systolic blood pressure (SBP) data from the Framingham Heart Study. A first-stage linear model was fit to each subject's SBP measurements to estimate both their slope over time and an intercept, the latter scaled to represent the mean SBP at the average observed age (53.7 years). The subject-specific intercepts and slopes were then analyzed using segregation and linkage analysis. We describe a method for using the standard errors of the first-stage intercepts and slopes as weights in the genetic analyses. For the intercepts, we found significant evidence of a Mendelian gene in segregation analysis and suggestive linkage results (with LOD scores ≥ 1.5) for specific markers on chromosomes 1, 3, 5, 9, 10, and 17. For the slopes, however, the data did not support a Mendelian model, and thus no formal linkage analyses were conducted

    An Approach to Identify Gene-Environment interactions and Reveal New Biological insight in Complex Traits

    Get PDF
    There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. to address this issue, the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium has been spearheading efforts to investigate G × E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identify and confirm 5 loci (6 independent signals) interacted with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrate that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated heritability is significant (P \u3c 0.02) for low-density lipoprotein cholesterol and triglycerides in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits

    Probing the diabetes and colorectal cancer relationship using gene – environment interaction analyses

    Full text link
    BackgroundDiabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis.MethodsWe used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test).ResultsBased on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value(3-d.f.): 5.46 x 10(-11)) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value(2-d.f.): 7.84 x 10(-09)).DiscussionThese results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship
    • …
    corecore