33 research outputs found

    Finding the Right Distribution for Highly Skewed Zero-inflated Clinical Data

    Get PDF
    Discrete, highly skewed distributions with excess numbers of zeros often result in biased estimates and misleading inferences if the zeros are not properly addressed. A clinical example of children with electrophysiologic disorders in which many of the children are treated without surgery is provided. The purpose of the current study was to identify the optimal modeling strategy for highly skewed, zeroinflated data often observed in the clinical setting by: (a) simulating skewed, zero-inflated count data; (b) fitting simulated data with Poisson, Negative Binomial, Zero-Inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) models; and, (c) applying the aforementioned models to actual, highlyskewed, clinical data of children with an EP disorder. The ZIP model was observed to be the optimal model based on traditional fit statistics as well as estimates of bias, mean-squared error, and coverage. &nbsp

    The Role of Abnormal Placentation in Congenital Heart Disease; Cause, Correlate, or Consequence?

    Get PDF
    Congenital heart disease (CHD) is the most common birth defect, affecting ~1% of all live births (van der Linde et al., 2011). Despite improvements in clinical care, it is the leading cause of infant mortality related to birth defects (Yang et al., 2006) and burdens survivors with significant morbidity (Gilboa et al., 2016). Furthermore, CHD accounts for the largest proportion (26.7%) of birth defect-associated hospitalization costs—up to $6.1 billion in 2013 (Arth et al., 2017). Yet after decades of research with a primary focus on genetic etiology, the underlying cause of these defects remains unknown in the majority of cases (Zaidi and Brueckner, 2017). Unexplained CHD may be secondary to undiscovered roles of noncoding genetic, epigenetic, and environmental factors, among others (Russell et al., 2018). Population studies have recently demonstrated that pregnancies complicated by CHD also carry a higher risk of developing pathologies associated with an abnormal placenta including growth disturbances (Puri et al., 2017), preeclampsia (Auger et al., 2015; Brodwall et al., 2016), preterm birth (Laas et al., 2012), and stillbirth (Jorgensen et al., 2014). Both the heart and placenta are vascular organs and develop concurrently; therefore, shared pathways almost certainly direct the development of both. The involvement of placental abnormalities in congenital heart disease, whether causal, commensurate or reactive, is under investigated and given the common developmental window and shared developmental pathways of the heart and placenta and concurrent vasculature development, we propose that further investigation combining clinical data, in vitro, in vivo, and computer modeling is fundamental to our understanding and the potential to develop therapeutics

    Fetal echocardiographic imaging of ventricular noncompaction

    No full text

    Table_1_The Role of Abnormal Placentation in Congenital Heart Disease; Cause, Correlate, or Consequence?.XLSX

    No full text
    <p>Congenital heart disease (CHD) is the most common birth defect, affecting ~1% of all live births (van der Linde et al., 2011). Despite improvements in clinical care, it is the leading cause of infant mortality related to birth defects (Yang et al., 2006) and burdens survivors with significant morbidity (Gilboa et al., 2016). Furthermore, CHD accounts for the largest proportion (26.7%) of birth defect-associated hospitalization costs—up to $6.1 billion in 2013 (Arth et al., 2017). Yet after decades of research with a primary focus on genetic etiology, the underlying cause of these defects remains unknown in the majority of cases (Zaidi and Brueckner, 2017). Unexplained CHD may be secondary to undiscovered roles of noncoding genetic, epigenetic, and environmental factors, among others (Russell et al., 2018). Population studies have recently demonstrated that pregnancies complicated by CHD also carry a higher risk of developing pathologies associated with an abnormal placenta including growth disturbances (Puri et al., 2017), preeclampsia (Auger et al., 2015; Brodwall et al., 2016), preterm birth (Laas et al., 2012), and stillbirth (Jorgensen et al., 2014). Both the heart and placenta are vascular organs and develop concurrently; therefore, shared pathways almost certainly direct the development of both. The involvement of placental abnormalities in congenital heart disease, whether causal, commensurate or reactive, is under investigated and given the common developmental window and shared developmental pathways of the heart and placenta and concurrent vasculature development, we propose that further investigation combining clinical data, in vitro, in vivo, and computer modeling is fundamental to our understanding and the potential to develop therapeutics.</p

    Data_Sheet_1_The Role of Abnormal Placentation in Congenital Heart Disease; Cause, Correlate, or Consequence?.DOCX

    No full text
    <p>Congenital heart disease (CHD) is the most common birth defect, affecting ~1% of all live births (van der Linde et al., 2011). Despite improvements in clinical care, it is the leading cause of infant mortality related to birth defects (Yang et al., 2006) and burdens survivors with significant morbidity (Gilboa et al., 2016). Furthermore, CHD accounts for the largest proportion (26.7%) of birth defect-associated hospitalization costs—up to $6.1 billion in 2013 (Arth et al., 2017). Yet after decades of research with a primary focus on genetic etiology, the underlying cause of these defects remains unknown in the majority of cases (Zaidi and Brueckner, 2017). Unexplained CHD may be secondary to undiscovered roles of noncoding genetic, epigenetic, and environmental factors, among others (Russell et al., 2018). Population studies have recently demonstrated that pregnancies complicated by CHD also carry a higher risk of developing pathologies associated with an abnormal placenta including growth disturbances (Puri et al., 2017), preeclampsia (Auger et al., 2015; Brodwall et al., 2016), preterm birth (Laas et al., 2012), and stillbirth (Jorgensen et al., 2014). Both the heart and placenta are vascular organs and develop concurrently; therefore, shared pathways almost certainly direct the development of both. The involvement of placental abnormalities in congenital heart disease, whether causal, commensurate or reactive, is under investigated and given the common developmental window and shared developmental pathways of the heart and placenta and concurrent vasculature development, we propose that further investigation combining clinical data, in vitro, in vivo, and computer modeling is fundamental to our understanding and the potential to develop therapeutics.</p

    Association between seasonal Fontan timing, viral infection burden, and post-operative length of stay

    No full text
    The Fontan procedure (FP) is typically a semi-elective surgery performed between 2 and 5 years of age to complete staged single ventricle palliation. Optimal timing for the FP, particularly in relation to seasonal infectious burden, remains unclear. We queried the Pediatric Health Information System (PHIS) database for all admissions for viral respiratory infections (VRI) from January 2006 to September 2015 and separately for all admissions with a primary procedure code of FP. The PHIS query generated 2,767,142 admissions for VRI and 6349 admissions for the FP from 45 children\u27s hospitals. Of all FP, 2124 (33.5%) were performed from October through March. The median length of stay after Fontan procedure was 9 days (IQR 7-15). Median length of stay after FP was correlated with VRI burden (correlation coefficient = 0.3, p = 0.03). April through August (weeks 18 through 35) had the lowest VRI admission burden and FP length of stay was significantly shorter during this time (13.6 ± 14.8 days vs 14.9 ± 20.3 days, p = 0.03). The FP is frequently performed during the viral respiratory season. This timing is associated with an increased post-operative length of stay after the FP. For elective FP, ideal timing that avoids the viral respiratory season and minimizes post-operative LOS is April through August
    corecore