11,806 research outputs found

    Perceptions and correlates of peer-victimization and bullying

    Get PDF
    The experiences of peer-victimization and bullying are often treated empirically as though they are conceptually indistinct. Both involve repeated aggression,but definitions of bullying additionally emphasize the importance of aggressor intent and imbalance of power between the aggressor and the victim (Olweus, 1978; Whitney & Smith, 1993). The present study aimed to examine the extent to which peer-victimization and bullying are empirically similar. The sample comprised 1,429 pupils (50.2% male) aged between 8 and 13 years attending mainstream Scottish schools. Self-report questionnaire assessing peer-victimization and bullying, copingstrategy use (WCCL: Hunter, 2000), situational appraisal and depressive symptomatology (Birleson, 1981). Almost one-third (30.7%) of pupils reported experiencing peer-victimization, and of these 38.1% (11.7% of whole sample) were categorized as victims of bullying. Victims of bullying perceived higher levels of threat and lower levels of perceived control. They also reported using more Wishful Thinking and Social Support coping strategies, but did not differ on Problem Focused coping. Bullied pupils also reported higher levels of depressive symptomatology. Peer-victimization and bullying appear to be qualitatively different experiences for children and adolescents, with bullying being the more serious phenomenon

    Surrogate Accelerated Bayesian Inversion for the Determination of the Thermal Diffusivity of a Material

    Full text link
    Determination of the thermal properties of a material is an important task in many scientific and engineering applications. How a material behaves when subjected to high or fluctuating temperatures can be critical to the safety and longevity of a system's essential components. The laser flash experiment is a well-established technique for indirectly measuring the thermal diffusivity, and hence the thermal conductivity, of a material. In previous works, optimization schemes have been used to find estimates of the thermal conductivity and other quantities of interest which best fit a given model to experimental data. Adopting a Bayesian approach allows for prior beliefs about uncertain model inputs to be conditioned on experimental data to determine a posterior distribution, but probing this distribution using sampling techniques such as Markov chain Monte Carlo methods can be incredibly computationally intensive. This difficulty is especially true for forward models consisting of time-dependent partial differential equations. We pose the problem of determining the thermal conductivity of a material via the laser flash experiment as a Bayesian inverse problem in which the laser intensity is also treated as uncertain. We introduce a parametric surrogate model that takes the form of a stochastic Galerkin finite element approximation, also known as a generalized polynomial chaos expansion, and show how it can be used to sample efficiently from the approximate posterior distribution. This approach gives access not only to the sought-after estimate of the thermal conductivity but also important information about its relationship to the laser intensity, and information for uncertainty quantification. We also investigate the effects of the spatial profile of the laser on the estimated posterior distribution for the thermal conductivity

    How effective is school-based deworming for the community-wide control of soil-transmitted helminths?

    Get PDF
    Background: The London Declaration on neglected tropical diseases was based in part on a new World Health Organization roadmap to “sustain, expand and extend drug access programmes to ensure the necessary supply of drugs and other interventions to help control by 2020”. Large drug donations from the pharmaceutical industry form the backbone to this aim, especially for soil-transmitted helminths (STHs) raising the question of how best to use these resources. Deworming for STHs is often targeted at school children because they are at greatest risk of morbidity and because it is remarkably cost-effective. However, the impact of school-based deworming on transmission in the wider community remains unclear. Methods: We first estimate the proportion of parasites targeted by school-based deworming using demography, school enrolment, and data from a small number of example settings where age-specific intensity of infection (either worms or eggs) has been measured for all ages. We also use transmission models to investigate the potential impact of this coverage on transmission for different mixing scenarios. Principal Findings: In the example settings <30% of the population are 5 to <15 years old. Combining this demography with the infection age-intensity profile we estimate that in one setting school children output as little as 15% of hookworm eggs, whereas in another setting they harbour up to 50% of Ascaris lumbricoides worms (the highest proportion of parasites for our examples). In addition, it is estimated that from 40–70% of these children are enrolled at school. Conclusions: These estimates suggest that, whilst school-based programmes have many important benefits, the proportion of infective stages targeted by school-based deworming may be limited, particularly where hookworm predominates. We discuss the consequences for transmission for a range of scenarios, including when infective stages deposited by children are more likely to contribute to transmission than those from adults

    Repellency Assessment of Nepeta cataria Essential Oils and Isolated Nepetalactones on Aedes aegypti.

    Get PDF
    There is an increased need for improved and affordable insect repellents to reduce transmission of rapidly spreading diseases with high mortality rates. Natural products are often used when DEET cannot be afforded or accessed and when consumers choose not to use a synthetic repellent. The essential oils from two newly bred Nepeta cataria (catnip) plants representing two different chemotypes and their respective isolated nepetalactone isomers were evaluated as mosquito repellents against Aedes aegypti mosquitoes that transmit the Zika and Dengue virus in a one choice landing rate inhibition assay. A dose response curve was generated for each treatment and a time course analysis of repellency was performed over 24 hours with a N. cataria essential oil sample. The results indicate that all essential oil samples and their respective purified nepetalactone isomers were able to achieve greater than 95% repellency. Between two and four hours, the ability to repel more than 95% of the mosquitoes diminished. At the lowest concentrations tested, the nepetalactones and crude essential oil samples were more effective than DEET at reducing the number of mosquito landings

    IMPACTS OF PESTICIDE REGULATION ON THE CALIFORNIA STRAWBERRY INDUSTRY

    Get PDF
    Environmental regulation of agriculture is becoming increasingly important, and growers are increasingly concerned about the effects of regulations on their profitability. Regulations governing the use of a pesticide affect its economic value. Further, growers often face a choice among pesticide alternatives, each with its own set of regulatory restrictions. In this environment, the introduction of a new regulation can have complex effects on growers' profit-maximizing pesticide choices. Buffer zones and regional emissions caps mean that pesticide choices can have important spatial components. Our paper presents an optimization model that incorporates spatial considerations at the field and regional level. We apply our model to fumigant choice by California strawberry growers. The industry is facing an impending ban on the use of methyl bromide, which in conjunction with chloropicrin was the standard fumigant for over forty years. In addition to the forthcoming ban, the state government has imposed regulations governing methyl bromide application, including buffer zones, etc. These extreme use restrictions provide us with an interesting environment for modeling the effects of pesticide regulations. There are currently two legally available fumigants that may substitute for methyl bromide in strawberries: 1,3-D and chloropicrin. 1, 3-D is subject to township caps and other restrictions. Township caps limit total application in an area. The California Department of Pesticide Regulation is currently undertaking air monitoring and other activities to determine whether or not buffer zones and other restrictions should be applied to chloropicrin. We evaluate the effects of current and proposed regulations on field-level decisions and industry costs and returns. Methodology To the best of our knowledge, no study has examined the role of pesticide use regulations in determining growers' profit-maximizing pesticide choices at the field level. We do so by combining three datasets with a field-level spatial model of the profit-maximizing fumigation decision. The first dataset includes detailed field-level information regarding the costs and yields associated with alternative fumigants obtained from a multi-disciplinary research project. The second includes chemical-specific California use regulations regarding treatment rates, buffer zones, and other restrictions. The third includes information on the shapes and sizes of strawberry fields in California. Using these data, the optimization model computes the profit-maximizing treatment for each field including pattern of treatment and number of acres treated per day, etc. Field-level results are aggregated to evaluate the impact of regional pesticide regulations, and then to estimate the industry-level effects of current and proposed pesticide use regulations. We model the effects of the entire regulatory system on the fumigation decisions made by farmers. The restrictions on fumigants are integrated into a field-level programming model of a grower's fumigant decision choice. The program calculates the optimal fumigation plan for a field, given the field's size and shape, and use regulations, and per-acre costs and returns associated with each fumigant. The resulting field-level choices are aggregated in order to check for consistency with township caps. If caps are exceeded, the model is rerun using a number of allocation rules. All choices for all fields are aggregated in order to obtain industry-level results. We perform this procedure for the current set of restrictions and for several alternative sets, assessing the profitability of each alternative. For example, we remove the existing township caps on 1,3-D and evaluate how much the results change. We include varying buffer zone restrictions on chloropicrin, and evaluate whether growers' fumigant choices are sensitive to the size of the buffer zone. Relevance Environmental regulation of agriculture is becoming increasingly important. By explicitly analyzing the effect of regulations affecting methyl bromide alternatives in a model that includes both the spatial dimensions of some regulations and the costs and yields associated with each alternative, we will obtain a more detailed and accurate assessment of the costs of these regulations than is currently available. Our results will provide a greater understanding of the effects of these regulations on industry profitability, and how these regulations interact. Our model can be applied to other cases of pesticide regulations. Given the increasing importance of environmental regulation in agriculture, it is important to aid policymakers in understanding how regulations interact with each other, possibly in unexpected ways.Environmental Economics and Policy,

    Dark-Ages Reionisation & Galaxy Formation Simulation XVI: The Thermal Memory of Reionisation

    Full text link
    Intergalactic medium temperature is a powerful probe of the epoch of reionisation, as information is retained long after reionisation itself. However, mean temperatures are highly degenerate with the timing of reionisation, with the amount heat injected during the epoch, and with the subsequent cooling rates. We post-process a suite of semi-analytic galaxy formation models to characterise how different thermal statistics of the intergalactic medium can be used to constrain reionisation. Temperature is highly correlated with redshift of reionisation for a period of time after the gas is heated. However as the gas cools, thermal memory of reionisation is lost, and a power-law temperature-density relation is formed, T=T0(1+ÎŽ)1−γT = T_0(1+\delta)^{1-\gamma} with γ≈1.5\gamma \approx 1.5. Constraining our model against observations of electron optical depth and temperature at mean density, we find that reionisation likely finished at zreion=6.8−0.8+0.5z_{\rm{reion}} = 6.8 ^{+ 0.5} _{-0.8} with a soft spectral slope of α=2.8−1.0+1.2\alpha = 2.8 ^{+ 1.2} _{-1.0}. By restricting spectral slope to the range [0.5,2.5][0.5,2.5] motivated by population II synthesis models, reionisation timing is further constrained to zreion=6.9−0.5+0.4z_{\rm{reion}} = 6.9 ^{+ 0.4} _{-0.5}. We find that, in the future, the degeneracies between reionisation timing and background spectrum can be broken using the scatter in temperatures and integrated thermal history.Comment: 17 pages, 17 figures, Accepted for publication in MNRA
    • 

    corecore