172 research outputs found

    Meaning in life in psychotherapy: The perspective of experienced psychotherapists

    Get PDF
    Objective Our goal was to explore the meaning experienced psychotherapists derive from providing psychotherapy, their beliefs about the role of meaning in life (MIL) in psychotherapy, how they worked with MIL with a client who explicitly presented concerns about MIL, and how they worked with a different client for whom MIL was a secondary and more implicit concern. Method Thirteen experienced psychotherapists were interviewed and data were analyzed using consensual qualitative research. Results Therapists derived self-oriented meaning (e.g., feeling gratified, fulfilled, connected) and other-oriented meaning (helping others, making the world a better place) from providing psychotherapy. They believed that MIL is fundamental and underlies all human concerns, including those brought to therapy. In contrast to the clients who had implicit MIL concerns, clients who explicitly presented MIL concerns were reported to have more interpersonal problems and physical problems, but about the same amount of psychological distress and loss/grief. Therapists used insight-oriented interventions, support, action-oriented interventions, and exploratory interventions to work with MIL with both types of clients, but used more exploratory interventions with implicit than explicit MIL clients. Conclusions MIL is a salient topic for experienced, existentially oriented psychotherapists; they work with MIL extensively with some clients in psychotherapy. We recommend that therapists receive training to work with MIL in therapy, and that they pay attention to MIL concerns when they conduct psychotherapy. We also recommend additional research on MIL in psychotherapy

    Occurrence of whale barnacles in Nerja Cave (Málaga, southern Spain): Indirect evidence of whale consumption by humans in the Upper Magdalenian

    Get PDF
    A total of 167 plates of two whale barnacle species (Tubicinella majorLamarck, 1802 and Cetopirus complanatusMörch, 1853) have been found in the Upper Magdalenian layers of Nerja Cave, Mina Chamber (Maro, Málaga, southern Spain). This is the first occurrence of these species in a prehistoric site. Both species are specific to the southern right whale Eubalena australis, today endemic in the Southern Hemisphere. Because of Antarctic sea-ice expansion during the Last Glacial Period, these whales could have migrated to the Northern Hemisphere, and reached southern Spain. Whale barnacles indicate that maritime-oriented forager human groups found stranded whales on the coast and, because of the size and weight of the large bones, transported only certain pieces (skin, blubber and meat) to the caves where they were consumed

    Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector

    Get PDF
    We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the world\u27s most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a more robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spin-dependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c^2 a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31+/-0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility

    First background-free limit from a directional dark matter experiment: results from a fully fiducialised DRIFT detector

    Get PDF
    The addition of O2 to gas mixtures in time projection chambers containing CS2 has recently been shown to produce multiple negative ions that travel at slightly different velocities. This allows a measurement of the absolute position of ionising events in the z (drift) direction. In this work, we apply the z-fiducialisation technique to a directional dark matter search. In particular, we present results from a 46.3 live-day source-free exposure of the DRIFT-IId detector run in this completely new mode. With full-volume fiducialisation, we have achieved the first background-free operation of a directional detector. The resulting exclusion curve for spin-dependent WIMP-proton interactions reaches 0.9 pb at 100 GeV/c2, a factor of 2 better than our previous work. We describe the automated analysis used here, and argue that detector upgrades, implemented after the acquisition of these data, will bring an additional factor of \u3e3 improvement in the near future

    Structural studies of metal ligand complexes by ion mobility-mass spectrometry

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12127-013-0122-8Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1. 1 % and 0. 7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods. © 2013 Springer-Verlag Berlin Heidelberg

    Phenotypic Consequences of Copy Number Variation: Insights from Smith-Magenis and Potocki-Lupski Syndrome Mouse Models

    Get PDF
    The characterization of mice with different number of copies of the same genomic segment shows that structural changes influence the phenotypic outcome independently of gene dosage

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
    corecore