6,985 research outputs found

    Discovery of a Magnetic DZ White Dwarf with Zeeman-Split Lines of Heavy Elements

    Get PDF
    A spectroscopic survey of previously-unstudied Luyten Half Second proper motion stars has resulted in the discoveries of two new cool magnetic white dwarfs. One (LHS 2273) is a routine DA star, T= 6,500K, with Zeeman-split H alpha and H beta, for which a simple model suggests a polar field strength of 18.5 MG viewed close to equator-on. However, the white dwarf LHS 2534 proves to be the first magnetic DZ showing Zeeman-split Na I and Mg I components, as well as Ca I and Ca II lines for which Zeeman components are blended. The Na I splittings result in a mean surface field strength estimate of 1.92 MG. Apart from the magnetic field, LHS 2534 is one of the most heavily-blanketed and coolest DZ white dwarfs at T ~ 6,000K.Comment: 7 pages, Astrophysical Journal (Letters), in pres

    Three newly-discovered M-dwarf companions of Solar Neighbourhood stars

    Get PDF
    We present low-resolution spectroscopy of newly-discovered candidate companions to three stars in the Solar Neighbourhood. All three companions are M dwarfs, with spectral types ranging from M4 to M9.5. In two cases, G85-55`B' (M6) and G87-9`B' (M4), we have circumstantial evidence from spectroscopy, photometry and limited astrometry that the systems are physical binaries; in the third, G216-7B (M9.5), comparison of POSS II IIIaF plate material and the 2MASS image indicates common proper motion. The primary star in this system, G216-7A (M0), appears itself to be an unresolved, nearly equal-mass binary. All three low-mass companions are highly likely to be stellar in nature, although G216-7B lies very close to the hydrogen-burning limit.Comment: Accepted for publication in PASP; 21 pages, 6 figure

    On-disc observations of flux rope formation prior to its eruption

    Get PDF
    Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME

    Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    Get PDF
    Abstract. Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the Îș parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and Îș values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %

    Evolution of directional hearing in moths via conversion of bat detection devices to asymmetric pressure gradient receivers

    Get PDF
    Small animals typically localize sound sources by means of complex internal connections and baffles that effectively increase time or intensity differences between the 2 ears. But some miniature acoustic species achieve directional hearing without such devices, indicating that other mechanisms have evolved. Using 3D laser vibrometry to measure tympanum deflection, we show that female lesser waxmoths (Achroia grisella) can orient toward the 100-kHz male song because each ear functions independently as an asymmetric pressure gradient receiver that responds sharply to high-frequency sound arriving from an azimuth angle 30° contralateral to the animal's midline. We found that females presented with a song stimulus while running on a locomotion compensation sphere follow a trajectory 20° - 40° to the left or right of the stimulus heading but not directly toward it, movement consistent with the tympanum deflections and suggestive of a monaural mechanism of auditory tracking. Moreover, females losing their track typically regain it by auditory scanning – sudden, wide deviations in their heading – and females initially facing away from the stimulus quickly change their general heading toward it, orientation indicating superior ability to resolve the front-rear ambiguity in source location. X-ray CT scans of the moths did not reveal any internal coupling between the 2 ears, confirming for the first time that an acoustic insect can localize a sound source based solely on the distinct features of each ear

    Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)

    Get PDF
    Copyright @ 1989 American Institute of PhysicsBimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gases—Mu+X2→MuX+X—are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(−0.095±0.020) kcal mol−1], constant over the temperature range of ∌200–400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This result is consistent with the energy dependence in the reactive cross section found some years ago in the atomic beam data of Hepburn et al. [J. Chem. Phys. 69, 4311 (1978)]. In comparing the present Mu data with the corresponding H atom kinetic data, it is found that Mu invariably reacts considerably faster than H at all temperatures, but particularly so at low temperatures in the cases of F2 and Cl2. The current transition state calculations of Steckler, Garrett, and Truhlar [Hyperfine Interact. 32, 779 (986)] for Mu+X2 account reasonably well for the rate constants for F2 and Cl2 near room temperature, but their calculated value for Mu+Br2 is much too high. Moreover, these calculations seemingly fail to account for the trend in the Mu+F2 and Mu+Cl2 data toward pronounced quantum tunneling at low temperatures. It is noted that the Mu kinetics provide a crucial test of the accuracy of transition state treatments of tunneling on these early barrier HX2 potential energy surfaces.NSERC (Canada), Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their partial support of this research and the Canada Council

    Four nearby L dwarfs

    Get PDF
    We present spectroscopic, photometric and astrometric observations of four bright L dwarfs identified in the course of the 2MASS near-infrared survey. Our spectroscopic data extend to wavelengths shortward of 5000\AA in the L0 dwarf 2MASSJ0746+2000 and the L4 dwarf 2MASSJ0036+1840, allowing the identification of absorption bands due to MgH and CaOH. The atomic resonance lines Ca I 4227\AA and Na I 5890/5896\AA are extremely strong, with the latter having an equivalent width of 240\AA in the L4 dwarf. By spectral type L5, the D lines extend over ∌1000\sim1000\AA and absorb a substantial fraction of the flux emitted in the V band, with a corresponding effect on the (V-I) broadband colour. The KI resonance doublet at 7665/7699\AA increases in equivalent width from spectral type M3 to M7, but decreases in strength from M7 to L0 before broadening substantially at later types. These variations are likely driven by dust formation in these cool atmospheres.Comment: to appear in AJ, January 2000; 27 pages, including 3 tables and 7 figures embedded in the tex

    A Spectroscopic Survey of a Sample of Active M Dwarfs

    Get PDF
    A moderate resolution spectroscopic survey of Fleming's sample of 54 X-ray selected M dwarfs with photometric distances less than 25 pc is presented. Radial and rotation velocities have been measured by fits to the H-alpha profiles. Radial velocities have been measured by cross correlation. Artificial broadening of an observed spectrum has produced a relationship between H-alpha FWHM and rotation speed, which we use to infer rotation speeds for the entire sample by measurement of the H-alpha emission line. We find 3 ultra-fast rotators (UFRs, vsini > 100km/s), and 8 stars with 30 < vsini < 100 km/s. The UFRs have variable emission. Cross-correlation velocities measured for ultra-fast rotators (UFRs) are shown to depend on rotation speed and the filtering used. The radial velocity dispersion of the sample is 17 km/s. A new double emission line spectroscopic binary with a period of 3.55 days has been discovered, and another known one is in the sample. Three other objects are suspected spectroscopic binaries, and at least six are visual doubles. The only star in the sample observed to have significant lithium is a known TW Hya Association member, TWA 8A. These results show that there are a number of young (< 10^8 yr) and very young (< 10^7 yr) low mass stars in the immediate solar neighbourhood. The H-alpha activity strength does not depend on rotation speed. Our fast rotators are less luminous than similarly fast rotators in the Pleiades. They are either younger than the Pleiades, or gained angular momentum in a different way.Comment: 38 pages incl. 14 figures and 4 tables, plus 12 pages of table for electronic journal only; LaTeX, aastex.cls. Accepted 07/18/02 for publication in The Astronomical Journa

    Resilin distribution and sexual dimorphism in the midge antenna and their influence on frequency sensitivity

    Get PDF
    Small-scale bioacoustic sensors, such as antennae in insects, are often considered, biomechanically, to be not much more than the sum of their basic geometric features. Therefore, little is known about the fine structure and material properties of these sensors—even less so about the degree to which the well-known sexual dimorphism of the insect antenna structure affects those properties. By using confocal laser scanning microscopy (CLSM), we determined material composition patterns and estimated distribution of stiffer and softer materials in the antennae of males and females of the non-biting midge Chironomus riparius. Using finite element modelling (FEM), we also have evidence that the differences in composition of these antennae can influence their mechanical responses. This study points to the possibility that modulating the elastic and viscoelastic properties along the length of the antennae can affect resonant characteristics beyond those expected of simple mass-on-a-spring systems—in this case, a simple banded structure can change the antennal frequency sensitivity. This constitutes a simple principle that, now demonstrated in another Dipteran group, could be widespread in insects to improve various passive and active sensory performances

    Protocols and Structures for Inference: A RESTful API for Machine Learning

    Get PDF
    Abstract Diversity in machine learning APIs (in both software toolkits and web services), works against realising machine learning&apos;s full potential, making it difficult to draw on individual algorithms from different products or to compose multiple algorithms to solve complex tasks. This paper introduces the Protocols and Structures for Inference (PSI) service architecture and specification, which presents inferential entities-relations, attributes, learners and predictors-as RESTful web resources that are accessible via a common but flexible and extensible interface. Resources describe the data they ingest or emit using a variant of the JSON schema language, and the API has mechanisms to support non-JSON data and future extension of service features
    • 

    corecore