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Small animals typically localize sound sources by means of complex
internal connections and baffles that effectively increase time
or intensity differences between the 2 ears. But some miniature
acoustic species achieve directional hearing without such devices,
indicating that other mechanisms have evolved. Using 3D laser vi-
brometry to measure tympanum deflection, we show that female
lesser waxmoths (Achroia grisella) can orient toward the 100-kHz
male song because each ear functions independently as an asym-
metric pressure gradient receiver that responds sharply to high-
frequency sound arriving from an azimuth angle 30° contralateral
to the animal's midline. We found that females presented with
a song stimulus while running on a locomotion compensation
sphere follow a trajectory 20° - 40° to the left or right of the
stimulus heading but not directly toward it, movement consistent
with the tympanum deflections and suggestive of a monaural
mechanism of auditory tracking. Moreover, females losing their
track typically regain it by auditory scanning 椴 sudden, wide
deviations in their heading 椴 and females initially facing away
from the stimulus quickly change their general heading toward
it, orientation indicating superior ability to resolve the front-rear
ambiguity in source location. X-ray CT scans of the moths did not
reveal any internal coupling between the 2 ears, confirming for the
first time that an acoustic insect can localize a sound source based
solely on the distinct features of each ear.

acoustic communication | Lepidoptera | sound localization | ultra-
sound

Introduction

The localization of sound sources by small animals is a funda-
mental problem in bioacoustics (1).Where body size is diminutive
and inter-ear distance is short, as is generally the case in acoustic
insects and anurans, it is improbable that an animal can rely on
inter-aural intensity difference (IID) or inter-aural time differ-
ence (ITD) mechanisms to resolve the azimuth angle towards
the source (2). Some acoustic insects and anurans overcome their
size constraints by means of multiple pathways along which sound
arrives at both the external and internal surfaces of the tympanal
membranes (3,4): because the separate pathways leading to the 2
surfaces of a tympanal membrane differ in length when the sound
source is ipsilateral, a phase difference between the external and
internal sound waves can arise for specific sound frequencies and
yield vibration of the membrane. The inter-aural phase differ-
ence (IPD) between these external-internal phase differences,
by generating a disparity in vibration between the 2 ears, may
then serve as a reliable indicator of the azimuth angle toward the
sound source. Curiously, certain small acoustic insects that do not
possess the anatomical features permitting an IPD mechanism
are nonetheless quite efficient at sound source localization. For
example, in the tachinid fly Ormia ochracea, a parasitoid of
singing male crickets, the 2 ears are separated by 500 µm and
sound waves arrive only at the external surfaces of the tympanal
membranes, but a specialized 'rocker-arm' apparatus connecting

the ears magnifies both the IID and ITD (5). These enhanced
inter-aural differences, combined with pooling the responses of
many individual receptor neurons, allow female O. ochracea to
localize their hosts with a high degree of directional precision.
Given the diversity of hearing organs that have evolved among
insects (6,7), it is likely that yet other localization mechanisms ex-
ist. Thus, examining directional hearing in small acoustic species
would be valuable in an evolutionary context, as well as in the
development of bio-inspired technology for sound localization.

Whereas the majority of research on acoustic insects has
focused on conspicuous singers among the Orthoptera and Ci-
cadidae (8), and more recently on Drosophila spp. (9) owing
to available genetic resources, most acoustic insects are to be
found in the Lepidoptera. Approximately 55% of lepidopteran
species have tympanal ears (10), hearing evolved independently
between 10-12 times in the order (11), and sound signaling 椴
using ultrasound frequencies 椴 for mating communication is now
known to occur in diverse species in several families, including
those characterized by small body size (12). Because mates may
need to be localized with the same precision as hosts, some
degree of directional hearing is expected in moth species that
communicate acoustically. Moreover, the apparent absence of
inter-aural bridges and of tracheal anatomy conducive to IPD
mechanisms in moths (13) strongly suggests that novel strategies
for sound source localization operate in lepidopteran hearing.

Among acoustic Lepidoptera, the lesser waxmoth (Achroia
grisella; Pyralidae: Galleriinae) was an ideal candidate for study-

Significance

In most acoustic animals directional hearing evolved alongside
basic ear structure. Pyraloid moths differ because their ears
generally function as simple bat detectors with little direc-
tional ability. Pyraloids that broadcast mating calls represent
a yet more special case, as these species do localize sound but
the ability evolved well after hearing and may be constrained
by fundamental auditory features. Analyzing a species with
male calling songs, we report a novel localization mechanism
wherein the membrane structure of each ear affords sharp
sensitivity to sound arriving from a distinct angle. Females
can thereby track male calls but only via an indirect, curvilin-
ear trajectory. Such inefficiency may characterize specialized
perceptual traits that rely on general ones having already
undergone extensive prior evolution.
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Submission PDFFig. 1. Schematic diagram of ventral side of the first abdominal segment of A.
grisella showing the general shape and position of the 2 tympana. Each tym-
panum is divided into a relatively thick anterior segment, the conjunctivum
or counter-tympanum (55,56), and a membranous posterior segment where
the peripheral neurons, collectively forming the scoloparium, are attached
(AP). The interface between the segments is highlighted by a dashed red line,
and the line passing through the attachment point and that is normal to the
inter-segmental interface is shown. The average distance between the left
and right attachment points in a female is approx. 600 ⊂m, which would yield
an interaural time difference (ITD) less than 1.75 ⊂s for sound arriving from a
lateral source. We estimated interaural intensity difference (IID) between the
2 tympana using the calculations for scattering of sound in air by a cylindrical
object (57). We assume that the moth瀞s abdomen is a cylinder of radius 0.6
mm and that the angular separation of the tympana is 碧 30° along the
abdomen circumference. For a biologically relevant sound, male song whose
dominant frequency 碧 100 kHz, arriving from a lateral source, we calculate an
SPL differential of 3.1 dB between the superposition of incident + scattered
sound at the left and right tympana (Supporting Information S1). The actual
differential is expected to be considerably less than 3.1 dB, as the ventral
surface of the abdomen in the region of the tympana is flattened, thereby
reducing the angular separation between axes normal to the body surface
at the 2 locations.

ing alternative means by which small animals might achieve di-
rectional hearing (14). Adult body lengths of males and females
average 8.5 and 11.5 mm, respectively, and the 2 tympana, situ-
ated ventrally on the 1st abdominal segment, face in nearly the
same direction and are separated by < 600 µm (Figure 1) (15).
Thus, even when sound is of very high frequency and arrives
from a lateral source, a standard IID mechanism would fail to
generate a meaningful differential between the 2 ears (Figure
1; Supporting Information S1). Likewise, the ITD would be 1.75
µs, less than stochastic variation in neural transmission. Despite
these anatomically imposed constraints, A. grisella display a level
of directional hearing that affords the localization of a distant
sound source. Male A. grisella remain stationary on the substrate
and, via wing-fanning, produce a train of damped pulses of ul-
trasound (70-130 kHz; 80-100 pulses·s-1; pulse length 100-150 µs)
that are attractive to females up to 1 m away (16). Receptive
females will run in the general direction toward a singing male
or a speaker broadcasting a synthetic song stimulus, and the
many behavioral studies conducted onA. grisella showed that such
localization is often accomplished within 20-30 s (17). Moreover,
females experience little difficulty in turning to localize the sound
source regardless of their initial orientation, implying that their
directional hearing incorporates amechanism for overcoming the

problem of front-rear ambiguity.A. grisella in flight respond to bat
echolocation signals by dropping vertically, and when running on
the substrate their response is a sudden cessation of movement
(18).

As in other Pyralidae, each tympanum in A. grisella is divided
into a thick anterior and a thin posterior segment (Figure 1)
(19,20). Vibration of the 2 segments in response to sound is
complex, and deflections are greater in the posterior segment.We
hypothesized that directional hearing in this small moth relies on
fine-scale aspects of vibration in the segmented tympana, and we
employed 4 approaches to specify the ability to localize a sound
source and to discern how features of tympanal vibration afford
this ability. We began by analyzing the orientation of female
A. grisella to a synthetic male song stimulus while moving on a
locomotion compensation sphere. We then used 3-dimensional
laser Doppler vibrometry to measure deflections of the tympa-
nal membranes in response to sound broadcast from different
azimuth angles. Via X-ray computer aided tomography (CT)
scanning we searched for potential morphological connections
or baffles between the left and right ears. Finally, we used the
CT scans to construct a finite element model of the sound field
around the moth瀞s body, and we modelled this field for sound
sources located at different azimuth angles.

Results and Discussion

74%of A. grisella females tested on the locomotion compensation
sphere ran toward the virtual source of the synthetic song stimulus
for at least 15 s (e.g. Fig. 2.a). Absolute angular deviations of
travel headings with respect to the stimulus, whose heading was
defined as 0°, taken over the previous 1 s of movement ranged
from 21°-38° for the initial 10 s of phonotaxis (average values of
17 females taken at 1-s intervals beginning at 1 s). Travel headings
were evenly divided between the left and right sides of the 0°
heading (sign test, p > 0.25) and had standard deviations ranging
from 15°-25°. Whereas the highest absolute angular deviation
(38°) occurred at 1 s following the onset of phonotaxis, deviations
did not decline significantly over the following 9 s (repeated
measures ANOVA, p = 0.07; for 1-s intervals beginning at 2 s, p
= 0.30). At 15 s, the absolute angular deviation was still 27°±24°.
6 moths began their movement with an 酉instantaneous heading瀞,
measurement taken over the last 100 ms, > 90° with respect
to the stimulus. But in 5 of these 6 insects the travel heading
measured over the previous 1 s was already < 45° at 1 s. Running
speed remained high throughout the trials (5.7 ± 1.6 cm·s-1, mean
± sd), equivalent to 5-6 body lengths·s-1 as measured along the
trajectory. 90% of the females tested made at least one circling
movement of small radius (< 3 cm), as well as angular deviations
exceeding 90°, during their trials.

Females tested with a song stimulus that included a 3-s silent
pause beginning at 8 s usually made angular deviations wider than
90°, and even circled completely, at the beginning of the silent
pause, movement that had been observed less frequently during
the last 3 s of the stimulus prior to the pause (sign test, p <
0.01; Fig. 2.b). By the end of the pause many females had ceased
movement (13 of 25 insects), but they usually began reorienting
and moving toward the stimulus when the sound continued and
again made wide angular deviations during the initial 3 s, activity
performed less frequently during the succeeding 3-s interval (sign
test, p < 0.01). Females tested with a song stimulus broadcast
from 2 sound sources, the first 8 s from a speaker at 0° and the
second 8 s from a speaker at 135°, mostly turned clockwise (16 of
21 females), as opposed to counter-clockwise, during the initial
2 s of the broadcast from the second speaker and reoriented and
moved toward it (Fig. 2.c). These reorientations were generally
gradual and finished with a travel heading within 45° of the
heading of the second speaker.
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Submission PDFFig. 2. a) Trajectories of 2 representative A. grisella females tested for orientation to a 30-s male song stimulus while running on a locomotion compensation
sphere. Panels 1 and 3 show the females瀞 x,y coordinates in a virtual plane over the course of their trials. The starting point is 0,0 and the sound source is
located along the vector normal to the x-axis. Symbols along each of the trajectories indicate the female瀞s position at successive 1-s intervals. Panels 2 and
4 show the females瀞 average headings relative to the sound source over the preceding 1-s interval as measured every 100 ms (red line) and their velocities
over that preceding 1-s interval (blue line). The female depicted in panels 1 and 2 retains a heading from 30° to 50° throughout her trial, whereas the female
depicted in panels 3 and 4 follows a heading approximately +45° for the first 10 s and then switches to a heading approximately -30°. b) Trajectory of a
representative female tested for orientation to a 19-s stimulus consisting of 8 s of song, 3 s of silence, and 8 s of song. Panel 1 shows the trajectory and panel 2
shows the average heading over the preceding 1 s, as in a) above. The female follows a heading approximately -30° during the first 8 s of song, circles during
the 3-s silent pause and stops, and then resumes a heading from -20° to -40° during the second 8 s of song. c) Trajectory of a representative female tested for
orientation to a 16-s stimulus consisting of 8 s of song from a speaker at 0° followed by 8 s of song from a speaker at 135°. Panel 1 shows the trajectory and
panel 2 shows the average heading over the preceding 1-s interval, as in a) above; the average heading is shown relative to 0° for both parts of the trial. The
female follows a heading approximately -30° with respect to the first speaker and then turns clockwise and follows a heading approximately 100°, equivalent
to -35° with respect to the second speaker.

Fig. 3. Laser vibrometry measurement of deflection magnitude measured
at 390 points in a representative tympanum (the tympanum presented is
the insect瀞s right); see text in Laser Vibrometry section of Methods for
determination of deflection. The deflections are characterized by a sharp,
primary peak and several smaller secondary peaks nearby. The sharp primary
peak was found in the center of the posterior, membranous segment of
the tympanum (region surrounded by dashed orange line). When the sound
source was located along the major axis of the tympanum, the primary peak
coincided with the neural attachment point (see Figure 1), but the peak
moved slightly when sound arrived from other directions.

3-dimensional laser vibrometry testing demonstrated that A.
grisella can localize high frequency sound because their seg-
mented tympana are not oriented in parallel and each functions
as a distinct pressure-gradient receiver. Measurements of the
response of a tympanum to broadcasts of 100 kHz sound showed
that the maximum deflection occurred at or close to the location
in the center of the thin posterior segment where the peripheral
neurons are attached (Figure 3). Membrane deflection at this
attachment point is expected to influence the probability that an
action potential(s) is transmitted by the peripheral neurons, and
we measured the maximum deflection there for sound broadcast

at all azimuth angles. Responses to these broadcasts revealed a
primary deflection peak in the right tympanum for a sound source
located 30° to the left of the insect瀞s midline (azimuth = -30°) as
well as a secondary deflection peak for sound located at 150° az-
imuth. Similarly, the tests of the left tympanum revealed a primary
deflection peak at +30° azimuth. The primary peak averaged 1.6
x the deflection magnitude of the secondary peak, and 2.8 x the
deflection magnitude for all other speaker angles tested (Figure
4.a). Significantly, a comparable study of tympanum responses in
a closely related species, Galleria mellonella (greater waxmoth;
Pyralidae: Galleriinae), that perceives high frequency sound but
has neither amale calling song nor female phonotaxis (12) did not
reveal pronounced deflection peaks for any azimuth (Figure 4.b).

At 100 kHz the wavelength of sound in air is 3.4 mm, less
than 6 x the average dimension of an A. grisella tympanum.
Consequently, a pressure gradient will occur between 2 points on
the tympanum when sound waves arrive from a source situated
along the line through those points (21). The gradient increases as
the 2 points are separated more widely, and maximum gradients
will thus occur for sound arriving along the major axis of the
tympanum, which is roughly aligned with the longitudinal axis of
the body (Fig. 1). Because the neural attachment point is situated
along or close to the major axis and higher pressure gradients
will result in greater membrane deflections, sound arriving along
the major axis will elicit maximum deflection of the attachment
point. It is likely that this general feature of tympanum geometry
is further modified and enhanced by material properties of the
membrane that yield greater deflection for sound arriving from
a distinct azimuth at each ear. For example, when sound arrives
at the right (left) tympanum from -30° (+30°), wavefronts will
be parallel to the boundary between the thick anterior and thin
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Fig. 4. a) Left panel: Normalized deflection magni-
tude at the attachment point in the right tympanum
of 10 Achroia grisella females for sound arriving from
different azimuth angles. Angles are measured clock-
wise around the vector normal to the dorsal surface
of the moth, with the body midline defined as 0°.
Absolute deflection magnitudes were highest at an
azimuth = -30° in 9 of 10 females; the remaining
female瀞s maximum deflection occurred at +150°. We
therefore normalized each female瀞s deflection mag-
nitudes by setting her value at -30° to 1.0 and ad-
justing her other values accordingly. Box plots show
median (black), mean (red), 25%-75% range (box),
10%-90% range (whiskers), and outliers for each az-
imuth angle. Azimuths not sharing a letter marking
the box are significantly different; Repeated measures
ANOVA (SigmaStat 3.5) with Holm-Sidak post-hoc test
for pairwise differences, p < 0.001. Right panel: Nor-
malized deflection magnitude in the left tympanum
of 2 A. grisella females (red and blue plots). Absolute
deflection magnitudes were highest at +30° in both
females, and we therefore set their values at this
azimuth to 1.0. b) Normalized deflection magnitude
at the attachment point in the right tympanum of
8 Galleria mellonella females. The highest deflection
magnitude averaged across all 8 females occurred at
-90°, and we therefore set each female瀞s value at this
azimuth to 1.0. Normalized deflections do not differ
between azimuths; Repeated measures ANOVA, p =
0.625.

Fig. 5. X-Ray CT scans of a female moth, focusing on the region between the
2 tympana. a) Sagittal scan of entire body. TRA indicates transverse plane
through the tympana on the first abdominal segment; scale bar is 1 mm.
b) Transverse scan of plane indicated by TRA in scan a. Yellow indicates a
sclerotized region; tympanal cavities are clearly shown (TY) and no internal
sclerotized connection between the cavities is evident. COR indicates coronal
plane through the tympana; scale bar is 200 ⊂m. c) Coronal scan of plane
indicated by COR in scan b. Again, no internal sclerotized connection is
evident; scale bar is 200 ⊂m.

posterior segments (Fig. 1) and may thereby generate maximum
excitation at the attachment point, in the center of the posterior
segment.

The trajectories of females on the sphere, which are centered
around +30° and -30° with respect to the synthetic song stimulus,
are congruent with our laser vibrometry measurements and de-
scription of the tympana as 2 distinct pressure gradient receivers.
Interestingly, our data are not consistent with the standard model
of tracking binaural cues (22,23) in which an animal attends to
information received at both ears and turns toward the one more
strongly stimulated. A. grisella females do not regularly zig-zag to
the left and right of a 0° heading, and while following a heading of
+30° (or -30°) they do not generally veer farther to the right (or to
the left), as would be predicted by the standard model. Whereas
females quickly orient in the general direction of the song stimu-
lus during the initial 1 s of a trial, they do not continue to improve
their alignment toward a 0° heading afterward. Rather, A. grisella
seem to 酉lock onto瀞 the stimulus with either the left or the right
ear, and then run forward while pursuing a heading of approx-
imately +30° or -30°, respectively, and ignoring the other ear.
Themoths do waver from a precise heading, of course, whichmay
have several consequences. Small departures from +30° or -30°
might be corrected by random turning or a sequential comparison
algorithm, a mechanism that A. grisella are known to possess (24).
Larger departures can result in locking onto the stimulus with the
other ear (e.g. Fig. 2.a) or in losing the stimulus entirely and then
regaining it via wide deviations or circling, a form of auditory
scanning (e.g. Fig. 2.b). Tracking of monaural cues 椴 attending
only to information received at a single ear 椴 may function in
A. grisella because the primary deflection peak is sharp (Fig. 4a)
and likely evokes a relatively high excitation level in comparison
with excitation at other headings, as would be experienced by the
opposite ear. Moreover, the moths have 2 different opportunities
to lock onto the stimulus, one with the left ear and one with the
right, and each would yield phonotaxis toward the sound source
(Fig. 2.a). Our model of monaural tracking predicts that off of the
sphere a female would follow a curved trajectory in approaching
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Fig. 6. Sound pressure level (SPL) around a simple
model of a female moth as simulated by COMSOL
MultiPhysics. a) Sagittal section, with anterior to the
left, showing predicted SPLs for a 94 dB (measured
at air domain boundary 10 cm from the insect) sound
source situated directly in front of the moth. SPLs are
6-7 dB higher in the cleft between the abdomen and
thorax, the location of the 2 tympana; scale bar is
1 mm. b) Predicted SPLs for the same sound source
located directly behind the moth. The SPL in the cleft
between the abdomen and the thorax is now 2-3 dB
lower than when the sound source was in front of
the insect; scale bar is 1 mm. c) Predicted SPLs across
the ventral surface of the 1st abdominal segment
for a sound source directly in front of the insect;
approximate locations of the tympana are indicated
by dashed lines; anterior is at the top. SPL is equivalent
across both tympana and reaches a maximum of 96.3
dB; scale bar is 500 ⊂m. d) Predicted SPLs for a sound
source at -30° azimuth with respect to the dorsal view
of the insect (+30° in the ventral view shown). SPL
is notably higher across the contralateral tympanum
(ranging from 93.9-94.8 dB) than across the ipsilateral
one (ranging from 93.9-92.1 dB); scale bar is 500 ⊂m. e)
Predicted SPLs at the neural attachment points in the
left tympanum (red) and the right tympanum (blue)
for a sound source situated at azimuths ranging from
-90° to +90°.

a male, as a +30° (-30°) heading with respect to the male would
be represented by an absolute heading that shifts continuously
toward the left (right). In fact, curved trajectories are regularly
observed in females approachingmales in a laboratory arena (17).

OurX-rayCT scanning eliminated the possibility that some of
the moth瀞s localization of a sound source could be attributed to
an IPD device or a rocker-arm bridging the 2 ears. These scans
revealed no sign that a trachea leads to the air cavity behind
the tympanal membrane, allowing sound waves to arrive at its
interior surface. Similarly, they revealed no internal sclerotized
connections between the two ears that could magnify the IID
or ITD (Figure 5). Moreover, laser vibrometry measurements
showed that tympanum deflections were equivalent for sound
arriving at -90° and +90° (Fig. 4a), implying that simple cross-
body transmission of sound was not generating an informative
IID. The equivalence of deflections generated by sound sources
at -90° and+90° also clearly refutes the possibility that themoth瀞s
body scatters high frequency sound arriving laterally and thereby
affords ameaningful IID for localization (cf. Figure 1; Supporting
Information S1).

The rapidity with which A. grisella females found the general
direction of a playback stimulus at its onset demonstrates reliable
resolution of the front-rear ambiguity in directional hearing (25).
Unlike phonotaxis toward the stimulus, these rotational move-
ments do appear to be initiated by comparison of information
received at the 2 ears: At the end of the first part of the 2-
speaker trials most females faced in the general direction of the

sound stimulus at 0° (e.g. Fig. 2.c). Consequently, their right ears
were normally more closely aligned than their left ears with the
sound stimulus at 135°, which was broadcast from behind them
in the second part of the trial. Thus, their right ears would have
been more strongly stimulated in the second part, and binaural
comparison would have led them to rotate toward the right and
eventually face in the general direction of the 135° speaker. Our
data largely agree with this prediction, as most females turned
clockwise (toward the right) to reorient, and the 5 females who
turned counter-clockwise had all been strongly oriented toward
the left of the 0° speaker. We suggest that binaural comparison
operated in this context because the secondary deflection peak
at -150° or +150°, being much less pronounced than the primary
deflection peak (Fig. 4a), did not invoke a high enough level of
relative excitation to release the monaural tracking process. The
difference between the primary and secondary peaks may arise
because the A. grisella tympanum itself acts as an asymmetric
rocker-arm device that amplifies deflections at the neural attach-
ment point in the center of the posterior segment when sound
waves arrive along the major axis from the front but much less so
when sound arrives from the rear.

Finite element analysis of the sound field around the moth
indicated a localized elevation in sound pressure level in the
immediate vicinity of the tympana when sound waves arrive from
a source within 30° of the moth瀞s midline. The region is approxi-
mately 1 mm in diameter and features sound pressure levels 6-
7 dB above the rest of the sound field (Figure 6). It forms by
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diffraction in the ventral cleft between the thorax and abdomen,
and it may increase general auditory sensitivity in A. grisella.
Because the pressure in the region of the contralateral tympanum
is 1-2 dB higher than on the ipsilateral side when sound arrives
from 30° to one side of the midline, the diffraction effect may
also improve directional hearing beyond the level afforded by the
distinct geometry and orientations of the tympana. At the same
time, finite element analysis also demonstrates that diffraction
cannot be the main factor responsible for directional hearing and
generating tympanum deflection peaks for sound at azimuths of
-30° and +30°: Our analysis predicts very similar sound pressure
levels at the neural attachment point in a tympanum for sound
sources at azimuths of -90° and +90° (Figure 6.e), and the small
differences (碧 2 dB) seen between the contralateral and ipsilateral
tympana for azimuths from 30° to 80° and from -30° to - 80°would
not account for the magnitude (碧 9 dB) and specific position
(azimuth 碧 30°) of the primary deflection peak (Figure 4.a).

A. grisella obviously localize sound sources, but the means
by which they do so is less direct than in other acoustic insects
(26,27). Their putative monaural tracking is suggestive of a line-
following robot (28,29), albeit a rather inefficient one. They
follow a curvilinear path toward a sound stimulus, their trajectory
is often interrupted by lateral excursions in order to regain a
signal, and any prompt arrival at the stimulus or a live male is
largely due to their running speed and maneuverability. Given
the importance of efficient mate finding, one must question why
this protocol persists. A likely answer may be found in studying
the timeline of evolution of acoustic communication in the Lep-
idoptera (30). All but one of the 10-12 independent origins of
hearing in the Lepidoptera occurred since 65MA before present,
the currently accepted date for the appearance of echolocation
in bats (12,31). This timing, taken in conjunction with ecological
patterns, has led to the inference that tympanal organs and
hearing ability in Lepidoptera evolved as a response to hunt-
ing by insectivorous bats: In 3 major moth clades, Noctuoidea,
Geometridae, and Pyraloidea, each including > 20,000 species,
hearing is ubiquitous except in species found in geographical
regions lacking bats or that are active during seasons or times of
day when bats are not (32). In these latter moth species tympanal
organs and hearing ability are reduced or absent, presumably as
a secondary loss (33). The hearing that had evolved in moths is
simple but highly effective for avoiding and escaping predatory
bats.Moths have 1-4 neurons per tympanumandminimum tuning
over a broad frequency range which extends well above 100 kHz
in some pyraloids (34,35). While negative phonotaxis away from
bat echolocation signals does occur in large-bodied noctuoids
(36椴38) and geometrids (39), whose relatively sensitive ears are
situated laterally and afford an IID as high as 15 dB (40,41),
directional responses as such may be negligible or absent in the
pyraloids (18). This latter group, being generally smaller, are not
superior fliers and have relatively high hearing thresholds (42,43),
features that would render the ability to localize a bat relatively
unimportant. Unlike noctuoids (44), a pyraloid moth may not
detect a bat until it is close, and any defensive flight maneuvers
might then be too slow to exploit information on the location of
the bat. Consequently, just diving toward the ground if in flight
and becoming immobile 椴 and silent 椴 if running on the substrate
(45椴47) appear to be their main defenses that rely on hearing.

In contrast to hearing, acoustic communication in moths is
rare and only occurs among isolated species and genera in the 3
major clades, a pattern that reflects an origin of sound signalling
via a sensory bias mechanism (45,48). In many cases the acoustic
communication is restricted to close-range courtship (49) wherein
directional hearing would not be critical, but in species such as
A. grisella that transmit sound signals over longer distances the
evolution of accurate directional ability would be expected. Con-
ceivably, this development could have been achieved via evolution

of an entirely new, highly efficient mechanism; e.g., the rocker-
arm device in parasitoid Ormia flies. But unlike Ormia, whose
acoustic perception of host crickets had probably evolved de
novo,Achroia already had an ancient system for perceiving sound.
Thus, it apparently followed a different evolutionary trajectory
and refitted old equipment 椴 a very basic bat detector 椴 for a new
task, localizing a mate.

Despite the overall similarity between Achroia ears and those
of related moth species wherein the ears still serve primarily as
bat detectors, some aspects of the directional hearing mechanism
in A. grisella may be highly derived characters. The differential
deflection of the neural attachment point in response to sound
sources at different azimuth angles around the tympanum, par-
ticularly for sources in front vs. behind, depends on specific
vibration properties of the 2 segments of the tympanalmembrane.
That such differential deflection is not observed in the closely
related species G. mellonella (Fig 4.b) reinforces the notion that
the directional hearing in A. grisella is a derived trait which
coevolved with its long-distance acoustic communication. Even
so, the special vibration modes and deflections of its tympana
must operate within the confines of the basic pyraloid moth ear,
whose simplicity can be a constraint. For example, the primary
deflection peak of tympanal vibration is rather sharp, exhibiting
changes in magnitude of 0.4 dB / ° azimuth, and one might expect
the females to use this information for accurately following a ±30°
heading toward the song stimulus (27). But with only 3 peripheral
neurons per tympanum (15,50), A. grisella would not be able to
benefit from pooling the responses of a population of neurons,
and its heading precision remains limited (Fig. 2) as a result of
intrinsic transmission variation within individual neurons.

Our findings are consistent with the general premise that
when specific trait B depends on the existence of general trait A,
and A is already present and functional, the evolution of B may
be constrained to forms that are less than optimal with respect
to what is known to be possible. That is, peaks and valleys in
the adaptive landscape may restrain evolutionary trajectories to
certain routes (51,52), thereby ruling out various possibilities for
some species. Further study of communication in diverse acoustic
species should reveal the extent to which this premise may be
applicable to directional ability and basic hearing.

Materials and Methods
Moths and Phonotaxis

A. grisella used in the experiments came from a laboratory colony
established from moths collected in the vicinity of honeybee colonies in
Florida in 2003. We reared the moths on a standard diet (16) and kept them in
an environmental chamber maintained at 25° and a 12:12 L:D photoperiod.
Because A. grisella females normally become unreceptive following a single
mating, we only used virgin females in our tests. All females were between
1-3 days old at the time of their tests, which were conducted during the first
4 h of the photoperiodic night.

We measured sound localization by analyzing phonotactic responses of
females to a male song stimulus while running on a locomotion compensa-
tion sphere (Syntech LC300). The stimulus was a song recorded from a single
male individual in the laboratory colony who exhibited acoustic features that
were average for the population. We broadcast the stimulus from a high-
frequency speaker (Avisoft Scanspeak, driven by an Avisoft Ultrasound Gate
Player 216M digital: analogue converter/amplifier) attached to a moveable
arm. This apparatus allowed us to position the speaker at the same elevation
as the test female situated on the top of the sphere while orienting it directly
at her but from a variable location behind the sphere. In each trial the
stimulus was adjusted to 80 dB SPL (peak measurement; 0 dB = 20 ⊂Pa) at
the female瀞s location, 15 cm distant from the speaker (cf. ref. 16). Stimulus
amplitude was re-calibrated at the beginning of each test day.

The operation of the locomotion compensation sphere retained the test
female on the top of the sphere throughout the trial. To ensure that she
remained at this location and did not fly off the sphere, we removed the
distal 2/3 of her wings on the day prior to testing. Females were immobilized
by brief cooling before wing removal. We did not observe any adverse effects
of wing removal on the female瀞s running or phonotaxis, which was similar
to that seen in laboratory arenas (17) and in their natural milieu adjacent to
honeybee colonies (53).

We tested 23 females in 30-s trials that analyzed responses to the song
stimulus broadcast from a location at 0° azimuth, directly behind the frame
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holding the sphere. In each trial we obtained the female瀞s trajectory as
reconstructed with Syntech TrackSphere software from the series of her x,y
coordinates in virtual space sampled at 100-ms intervals . We used these data
to determine 1) a running average of the insect瀞s azimuth heading relative to
the stimulus taken over the previous 1 s, 2) the running velocity, taken over
the previous 1 s, along the trajectory, and 3) the initial heading at the start
of the trial. In a second locomotion experiment we tested 26 females in 19-s
trials that comprised 8 s of the song stimulus, 3 s of silence, and a second 8
s of song. And in a third locomotion experiment using 2 speakers, we tested
another 26 females in 16-s trials in which the song stimulus was broadcast
from a speaker at 0° for the initial 8 s and then from a speaker at 135° for
the next 8 s.

Laser Vibrometry
We used laser vibrometry to measure in vivo tympanum deflections

in response to high frequency sound. Female A. grisella were immobilized
by cooling and then mounted, ventral side up, on a block of resin and
beeswax. The moth瀞s legs were removed and the thorax was lifted so that
the (abdominal) tympana were fully exposed. We fixed the mounting block
with the moth on a stable, rotating stage beneath a scanning 3-dimensional
laser vibrometer (Polytec PSV MSA100-3D) and then precisely positioned
the mounting such that the vibrometer focused on one of the moth瀞s
tympana. The results presented here represent the out of plane motion of
the membrane only. A 100 kHz (pure tone sine wave) sound stimulus was
generated from an Agilent 33220A 20 MHz Function Waveform Generator,
passed through a Brandenburg 475R Photomultiplier Power Supply, and
broadcast from a custom-built wide band air-coupled electrostatic transducer
(54) situated 30 cm to the side of the moth. Previous studies demonstrated
that A. grisella females move toward pure tone pulses generated from a wide
range of ultrasound frequencies (14) and that pulsed or continuous pure tone
sound at these frequencies elicits a certain level of tympanum response; this
response only varies ± 2 dB for stimuli of a fixed intensity ranging from 80
kHz to 100 kHz and ± 6 dB for 40 kHz to 100 kHz (20). We chose 100 kHz
for our sound stimulus because it is the dominant frequency in male song
among the A. grisella population tested, and it is also the frequency that
elicits maximum tympanum responses (20). The stimulus was calibrated to
86 dB SPL with the aid of a precision microphone (Bruel and Kjaer 4138)
placed 1 cm behind the moth and oriented directly toward the broadcasting
transducer. This stimulus and its orientation were designed to represent a
nearby male瀞s song as perceived by a female moving on a horizontal surface.
We tested the right tympanum in each of 10 females with 12 broadcasts
of the stimulus presented in 30° azimuth increments from -150° to +180°
relative to the moth瀞s midline. After each broadcast we rotated the stage
with the mounting block and moth to the next azimuth, confirmed the
position of the transducer relative to the moth, identified the midline of the
moth using the crosshairs in the microscope of the vibrometer, and made
final adjustments to the rotating stage relative to the midline. We used the
microscope to identify the exact position of the neuronal attachment point
in the tympanum for each azimuth increment.

Deflections were measured as the vertical distance between the highest
and lowest displacement of a given point on the tympanum while the sound
stimulus was broadcast. This procedure was conducted for 390 points on
the tympanum, each point being measured 25 times. Data analysis was
performed by Polytec v9.2 software, which sampled the vibrometer signals
at 512 kHz with a sample time of 128 ms. An FFT was performed with
a rectangular window and 25600 FFT lines giving a frequency resolution
of 7.8125 Hz. Although our sound stimulus was a pure tone, an FFT was
advantageous as it allowed us to use the vibrometer software瀞s automatic
generation of the linear frequency spectrum and corresponding coherence
and cross-correlation figures. The complex average of the velocity, V, was
calculated as the average of the real (Re) and imaginary (Im) components
(representing the magnitude and the phase of oscillation, respectively) of
each measurement, Vn:

The velocity was then converted into a displacement in post-processing.
We focused specifically on measuring deflection at the point where the
peripheral neurons are attached to the tympanal membrane.

We tested the left tympanum in 2 additional moths with 7 broadcasts at
azimuths from -90° to +90° and thereby compared the stimulus orientation
angle generating maximum deflection in the left and right tympana. All
12 moths remained alive throughout the series of measurements, which
typically lasted 3 h. However, many moths would not survive longer testing,
and this constraint precluded reliable measurements of the left and right
tympana in the same individual. For each moth measurements began at 0°
azimuth and were incremented clockwise. Thus, the stimulus eliciting the
primary deflection peak (Figure 4) was the last one tested in measurements
of the right ear but the second one tested in measurements of the left ear.

We obtained G. mellonella larvae from Blades Biological Supplies, Eden-
bridge, U.K. Rearing was similar to that for A. grisella, and we followed
the same laser vibrometry protocol to measure tympanum deflections in the
right tympanum of 8 females except that the sound stimulus was 60 kHz, the

frequency to which G. mellonella are maximally sensitive (42). The tympana
of G. mellonella are approximately twice the size of those in A. grisella,
implying that a pressure gradient mechanism in G. mellonella, should it
exist, would function at much lower frequencies than in A. grisella, further
justifying the stimulus we tested.

X-Ray CT Scanning
X-Ray Computer Tomography (CT) scans were performed using a Bruker

Skyscan 1172. A moth was mounted on a block of dental wax with its dorsal
side up and encased in a 5 mm diam. plastic tube. The tube was then placed
vertically, with the moth瀞s head upwards, in the imaging chamber of the
scanner. A voltage of 80 kV was applied to the X-Ray source, which was
positioned 85.79 mm from the center of rotation of the subject. No filter
was applied to the X-Ray source, and images were generated with 2664 x
4000 pixels at a resolution of 3.58 µm per pixel.

A total of 2400 images were taken in 0.3° increments around one
hemisphere of the moth; an average of 4 frames was taken at each rotation
increment. The images were collected and a volumetric reconstruction of
the moth body was generated by Bruker CTvol software. These images were
generated by calculating the rate of attenuation of the X-Ray through the
moth瀞s body. The threshold for this attenuation signal was set manually in
order to reveal only sclerotized structures and ignore soft tissue of the moth.
3 moths were scanned in this way, 2 of which were prepared by saturation in
ethanol for 8 h followed by drying for 8 h. The scans were then performed the
following day. The remaining moth was scanned immediately post-mortem
with no additional preparation.

Sound Field Modeling
COMSOL MultiPhysics was used to simulate the 3-dimensional sound

field around the moth瀞s body. These simulations allowed us to estimate
sound pressure levels around an intact moth assuming a normal posture,
particularly in the region immediately adjacent to the tympana. A floating
point mesh of the thorax and abdomen was generated by the X-Ray CT
scanner and used as a template in SolidWorks for a simple geometrical
representation of the moth body. A principal feature of this representation
is the cleft between the thorax and abdomen, which is 500 ⊂m wide at the
ventral surface and extends 1500 ⊂m back into the moth瀞s body. The complete
model comprised the thorax and abdomen fixed in a spherical air domain 10
mm in radius. As in the laser vibrometry measurements, the sound stimulus
was a pure tone of 100 kHz presented parallel to the tympanum surface, with
a variable azimuth angle around the axis normal to this surface. The location
of the simulated sound source was modified in 10° azimuth increments, with
0° representing a sound source directly ahead of the insect and on its midline.
We set the stimulus amplitude to 94 dB SPL at the boundary of the air
domain.
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