6,963 research outputs found

    The Link Between Health Insurance Coverage and Citizenship Among Immigrants: Bayesian Unit-Level Regression Modeling of Categorical Survey Data Observed with Measurement Error

    Full text link
    Social scientists are interested in studying the impact that citizenship status has on health insurance coverage among immigrants in the United States. This can be done using data from the Survey of Income and Program Participation (SIPP); however, two primary challenges emerge. First, statistical models must account for the survey design in some fashion to reduce the risk of bias due to informative sampling. Second, it has been observed that survey respondents misreport citizenship status at nontrivial rates. This too can induce bias within a statistical model. Thus, we propose the use of a weighted pseudo-likelihood mixture of categorical distributions, where the mixture component is determined by the latent true response variable, in order to model the misreported data. We illustrate through an empirical simulation study that this approach can mitigate the two sources of bias attributable to the sample design and misreporting. Importantly, our misreporting model can be further used as a component in a deeper hierarchical model. With this in mind, we conduct an analysis of the relationship between health insurance coverage and citizenship status using data from the SIPP

    FIRE Cirrus on October 28, 1986: LANDSAT; ER-2; King Air; theory

    Get PDF
    A simultaneous examination was conducted of cirrus clouds in the FIRE Cirrus IFO-I on 10/28/86 using a multitude of remote sensing and in-situ measurements. The focus is cirrus cloud radiative properties and their relationship to cloud microphysics. A key element is the comparison of radiative transfer model calculations and varying measured cirrus radiative properties (emissivity, reflectance vs. wavelength, reflectance vs. viewing angle). As the number of simultaneously measured cloud radiative properties and physical properties increases, more sharply focused tests of theoretical models are possible

    4D, N = 1 Supersymmetry Genomics (I)

    Full text link
    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N = 1 component descriptions of supermultiplets are associated with two integers - the numbers of c-V and t-V Adinkras that occur in the representation.Comment: 53 pages, 19 figures, Report-II of SSTPRS 2008 Added another chapter for clarificatio

    The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of satellite and aircraft derived particle size

    Get PDF
    Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined

    Cohomogeneity one manifolds and selfmaps of nontrivial degree

    Full text link
    We construct natural selfmaps of compact cohomgeneity one manifolds with finite Weyl group and compute their degrees and Lefschetz numbers. On manifolds with simple cohomology rings this yields in certain cases relations between the order of the Weyl group and the Euler characteristic of a principal orbit. We apply our construction to the compact Lie group SU(3) where we extend identity and transposition to an infinite family of selfmaps of every odd degree. The compositions of these selfmaps with the power maps realize all possible degrees of selfmaps of SU(3).Comment: v2, v3: minor improvement

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015

    The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    Get PDF
    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes

    A Hybrid Sequencing Approach Completes the Genome Sequence of Thermoanaerobacter ethanolicus JW 200

    Get PDF
    This is the final version. Available on open access from American Society for Microbiology via the DOI in this recordData availability.The complete genome sequence of T. ethanolicus JW 200 is deposited in GenBank under the accession number CP033580. Illumina and Oxford Nanopore DNA sequence reads have been deposited in the NCBI Sequence Read Archive (accession numbers SRR8113455 and SRR8113456).Thermoanaerobacter ethanolicus JW 200 has been identified as a potential sustainable biofuel producer due to its ability to readily ferment carbohydrates to ethanol. A hybrid sequencing approach, combining Oxford Nanopore and Illumina DNA sequence reads, was applied to produce a single contiguous genome sequence of 2,911,280 bp.Shell Research Ltd

    Bounding the dimensions of rational cohomology groups

    Full text link
    Let kk be an algebraically closed field of characteristic p>0p > 0, and let GG be a simple simply-connected algebraic group over kk that is defined and split over the prime field Fp\mathbb{F}_p. In this paper we investigate situations where the dimension of a rational cohomology group for GG can be bounded by a constant times the dimension of the coefficient module. We then demonstrate how our results can be applied to obtain effective bounds on the first cohomology of the symmetric group. We also show how, for finite Chevalley groups, our methods permit significant improvements over previous estimates for the dimensions of second cohomology groups.Comment: 13 page
    • …
    corecore