579 research outputs found

    Bravyi-Kitaev Superfast simulation of fermions on a quantum computer

    Full text link
    Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of the hydrogen molecule, we have compared BKSF, Jordan-Wigner and Bravyi-Kitaev transforms under the Trotter approximation. We considered different orderings of the exponentiated terms and found lower Trotter errors than previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to further study of the BKSF algorithm for quantum simulation.Comment: 13 pages, 5 figure

    On the NP-completeness of the Hartree-Fock method for translationally invariant systems

    Full text link
    The self-consistent field method utilized for solving the Hartree-Fock (HF) problem and the closely related Kohn-Sham problem, is typically thought of as one of the cheapest methods available to quantum chemists. This intuition has been developed from the numerous applications of the self-consistent field method to a large variety of molecular systems. However, as characterized by its worst-case behavior, the HF problem is NP-complete. In this work, we map out boundaries of the NP-completeness by investigating restricted instances of HF. We have constructed two new NP-complete variants of the problem. The first is a set of Hamiltonians whose translationally invariant Hartree-Fock solutions are trivial, but whose broken symmetry solutions are NP-complete. Second, we demonstrate how to embed instances of spin glasses into translationally invariant Hartree-Fock instances and provide a numerical example. These findings are the first steps towards understanding in which cases the self-consistent field method is computationally feasible and when it is not.Comment: 6 page

    Local spin operators for fermion simulations

    Get PDF
    Digital quantum simulation of fermionic systems is important in the context of chemistry and physics. Simulating fermionic models on general purpose quantum computers requires imposing a fermionic algebra on spins. The previously studied Jordan-Wigner and Bravyi-Kitaev transformations are two techniques for accomplishing this task. Here we re-examine an auxiliary fermion construction which maps fermionic operators to local operators on spins. The local simulation is performed by relaxing the requirement that the number of spins should match the number of fermionic modes. Instead, auxiliary modes are introduced to enable non-consecutive fermionic couplings to be simulated with constant low-rank tensor products on spins. We connect the auxiliary fermion construction to other topological models and give examples of the construction

    Superfast encodings for fermionic quantum simulation

    Full text link
    Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree dd to a qubit simulator Hamiltonian composed of Pauli operators of weight O(d)O(d). A system of mm fermi modes gets mapped to n=O(md)n=O(md) qubits. We propose Generalized Superfast Encodings (GSE) which require the same number of qubits as the original one but have more favorable properties. First, we describe a GSE such that the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree d6d\ge 6. In contrast, we prove that the original Superfast Encoding lacks the error correction property for d6d\le 6. Secondly, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from O(d)O(d) to O(logd)O(\log{d}). The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the new encoding to the fermionic Hubbard model on a 2D lattice.Comment: 9 pages, 4 figure

    Simulation of Electronic Structure Hamiltonians Using Quantum Computers

    Get PDF
    Over the last century, a large number of physical and mathematical developments paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, the lack of computationally efficient methods for the exact simulation of quantum systems on classical computers presents a limitation of current computational approaches. We report, in detail, how a set of pre-computed molecular integrals can be used to explicitly create a quantum circuit, i.e. a sequence of elementary quantum operations, that, when run on a quantum computer, obtains the energy of a molecular system with fixed nuclear geometry using the quantum phase estimation algorithm. We extend several known results related to this idea and discuss the adiabatic state preparation procedure for preparing the input states used in the algorithm. With current and near future quantum devices in mind, we provide a complete example using the hydrogen molecule of how a chemical Hamiltonian can be simulated using a quantum computer.Chemistry and Chemical Biolog
    corecore