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Over the last century, a large number of physical and mathematical developments paired
with rapidly advancing technology have allowed the field of quantum chemistry to ad-
vance dramatically. However, the lack of computationally efficient methods for the exact
simulation of quantum systems on classical computers presents a limitation of current
computational approaches. We report, in detail, how a set of pre-computed molecular
integrals can be used to explicitly create a quantum circuit, i.e. a sequence of elementary
quantum operations, that, when run on a quantum computer, to obtain the energy of
a molecular system with fixed nuclear geometry using the quantum phase estimation
algorithm. We extend several known results related to this idea and discuss the adia-
batic state preparation procedure for preparing the input states used in the algorithm.
With current and near future quantum devices in mind, we provide a complete example
using the hydrogen molecule, of how a chemical Hamiltonian can be simulated using a
quantum computer.

Keywords: electronic structure, quantum computing

1. Introduction

Theoretical and computational chemistry involves solving the equations of
motion that govern quantum systems by analytical and numerical methods [1,
2]. Except in standard cases such as, the harmonic oscillator or the hydrogen
atom, analytic solutions are not known and computational methods have been
developed.

Although classical computers have tremendously aided our understanding of
chemical systems and their processes, the computational cost of the numerical
methods for solving Schrödinger’s equation grows rapidly with increases in
the quality of the description. Research is ongoing to improve computational
methods, but large molecules and large basis sets have remained a consistent
problem despite the exponential growth of computational power of classical
computers [3].

Theoretical computer science suggests that these limitations are not mere
shortcomings of the programmers but could stem from the inherent difficultly
of simulating quantum systems. Extensions of computer science using quantum
mechanics led to the exploitation of the novel effects of quantum mechanics
for computational purposes resulting in several proposals for quantum com-
puters [4]. Quantum simulation is the idea of using quantum computational
devices for more efficient simulation [5, 6]. Since the dynamics are simulated
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by a quantum system rather than calculated by a classical system, quantum
simulation often offers exponential advantage over classical simulation for cal-
culation of electronic energies [7], reaction rates [8, 9], correlation functions [10]
and molecular properties [11]. Recently, a review of these techniques and other
applications of quantum computing to chemistry has appeared [12].

The state of the art in experimental realizations of quantum simulation for
chemistry is represented by calculations of the energy spectrum of molecular
hydrogen first by Lanyon et al. [13] using an optical quantum computer. Very
soon after, Du et al. [14] used NMR technology to demonstrate the adiabatic
state preparation procedure suggested by Ref. [7] as well as reproduce the
energy to higher accuracy.

The key limitation of both experimental algorithms was the representation
of the simulated system’s propagator. Both experiments, relied on the low
dimensionality of the propagator for the minimal basis H2 model considered.
The unitary propagator for a two-level system can be decomposed using the
real angles α, β, γ:

U = eiαRy(β)Rz(γ)Ry(−β)

Due to this decomposition, longer propagation times corresponding to higher
powers of unitary evolution operator, U j , can be achieved by changing α to
jα and γ to jγ, thereby avoiding the need of further decomposition of the
unitary operator. Beyond the two dimensional case, this decomposition is not
available.

The objective of this paper is to provide a general decomposition for elec-
tronic Hamiltonians and demonstrate this method with an explicit quantum
circuit for a single Trotter time step of the minimal basis hydrogen molecule.
This is an extension of the supplementary material from Lanyon et al. [13].
The construction of the general quantum circuit to simulate the propagator is
performed in three steps:

(1) Write the Hamiltonian as a sum over products of Pauli spin operators
acting on different qubits. This is described in Section 2 and made possible
by the Jordan-Wigner transformation.
(2) Convert each of the operators defined in step (1) into unitary gates
such that their sequential execution on a quantum copmuter can be made
to recover an approximation to the full unitary propagator. This is detailed
in Section 3.
(3) The phase estimation algorithm, as described in Section 4, is then used
to approximate the eigenvalues of an input eigenstate using the propaga-
tor created in step (2) to perform spectral analysis. Section 5 discusses
eigenstate preparation.

To demonstrate these steps, the construction is applied to the example of
the hydrogen molecule in Section 6. The key components of the simulation
procedure are depicted in Fig. 1. The next section provides a basic review
of the fundamental concepts and notations of molecular quantum chemistry
for the benefit of quantum information scientist and to establish the nota-
tion. A detailed account of electron structure methods can be found in the
monographs [1, 2].
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H ≡
∑
hi

Trotter−−−−−−−−−−−→
Decomposition

U ≈ (
∏
i e
−ihi∆t)

t
∆t

|ψ0〉−−−→ λ = e−iE0t

= e2πi(φ+k)

H ⇒ ↓ ↑ ⇒ E0

Jordan-Wigner
Transform

→ Phase
Estimation

Figure 1. An algorithmic overview of the steps taken to simulate a chemical Hamiltonian on a
quantum computer. The time independent Hamiltonian of a molecular system (to the left of the box)
will be decomposed into a sum of Hermitian matrices, (hi) and by means of a Trotter decomposition
the unitary propagator U can be constructed. The Jordan-Wigner mapping is used to convert the
propagator into a sequence of quantum gates. Phase estimation algorithms are used to evaluate the
eigenvalue of a correctly prepared stationary state |ψ0〉.

2. The Electronic Hamiltonian

The Born-Oppenheimer approximation assumes that the wave function of a
molecule can be expressed as a product state of the nuclear and electronic
wave functions due to the separation of time scales due to the difference in
mass between electron and nuclei. This approximation allows for the solution
of the time independent Schrödinger equation of the electronic wave function
for a given nuclear geometry.

The molecular electronic Hamiltonian1 in second quantized form is given by
[1, 2]:

H =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

hpqrsa
†
pa
†
qaras, (1)

where the sum is over the single particle basis set described below. The annihi-

lation {aj} and creation operators {a†j} obey the Fermionic anti-commutation

relations (see Table 1):

[ap, aq]+ = 0, [ap, a
†
q]+ = δpq1, (2)

where the anti-commutator of operators A and B is defined as [A,B]+ ≡
AB+BA. The annihilation (creation) operators correspond to a set of orbitals,
{χi}, where each orbital is a single-particle wave function composed of a spin
and a spatial function, denoted σi and ϕi, respectively. As the Hamiltonian
commutes with the electron spin operators, σi is restricted to be one of two
orthogonal functions of a spin variable ω that we denote α(ω) and β(ω). Similar
Hamiltonians can be found in many physics problems involving Fermionic
particles.

Although any basis can be used, the molecular orbitals are particularly con-
venient for state preparation reasons discussed below. The molecular orbitals,
in turn, are formed as a linear combinations of atomic basis functions [15, 16].
The coefficients of this expansion are obtained by solving the set of Hartree-
Fock equations which arise from the variational minimization of the energy
using a single determinant. Due to its restriction to a single determinant, the
Hartree-Fock solution is a mean field solution and the difference between the
Hartree-Fock solution using an infinite basis of atomic orbitals and the exact
(correlated) solution defines the electron correlation energy.

The matrix elements {hpq} and {hpqrs} in Eq. (1) denote the set of one- and
two-electron integrals that must be evaluated using a known set of basis func-

1Throughout this paper, atomic units are used: ~ (1.054 · 10−34 J s), the mass of the electron
(9.109 · 10−31 kg), the elementary charge (1.602 · 10−19 C), and the electrostatic force constant
(1/4πε0 = 8.988 · 109 N m2 C−2) are set to unity.
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Table 1. An overview of second quantization for Fermionic particles. For quantum chemistry, the annihilation and

creation operators correspond to removing (adding) an electron into a particular orbital, {χk}. The anti-symmetry is

enforced by the canonical commutation relations, and the N-electron wave function is expanded over the configuration

state functions of the Fock space.

Second quantization

Creation operator a†i |j1, . . . , 0i, . . . , jn〉 = Γj
i|j1, ..., 1i, ..., jn〉 with Γj

i =
∏i−1
n=1(−1)jn

a†i |j1, . . . , 1i, . . . , jn〉 = 0

Annihilation operator ai|j1, . . . , 1i, . . . , jn〉 = Γj
i|j1, ..., 0i, ..., jn〉

ai|j1, . . . , 0i, . . . , jn〉 = 0

Canonical commutation relations {a†i , aj} = δij1
{ai, aj} = 0

Fock space

Basis vectors,
configuration state functions

|j〉 = |j1, j2, ..., jN 〉
=

∏N
p=1

(
a†p
)jp
|vac〉 where ji = 0, 1

Inner product 〈j|k〉 =
∏N
p=1 δjp,kp

Vacuum state 〈vac|vac〉 = 0
ai|vac〉 = 0

Operator, Â Âija
†
iaj where Âij is evaluated

in the mode space
corresponding to {ak}

tions (the basis set) during the Hartree-Fock procedure. Ideally, the number of
basis functions used would be infinite, but in practice only a finite number of
basis functions are used. By selecting Gaussian functions single-particle basis
functions, these integrals are efficiently computable. Next, to further establish
notation, we develop the explicit form of the integrals hpq and hpqrs.

We denote the set of single-particle spatial functions which constitute the
molecular orbitals {ϕk(x)}Mk=1. Finally, define the set of spin orbitals as
{χp(x)}2Mp=1 with χp = ϕiσi and x = (x, ω) where σi is a spin function. In
the following equations for the one- and two-electron integrals, we identify
χp = ϕiσi, χq = ϕjσj , χr = ϕkσk, and χs = ϕlσl. The one-electron integrals in-
volving the electron’s kinetic energy and the electron-nuclear attraction terms:

hpq ≡
∫

dxχ∗p(x)

(
−1

2
∇2 −

∑
α

Zα
rα,x

)
χq(x)

= 〈ϕi|H(1)|ϕj〉 δσiσj . (3)

and the two-electron integrals involving the electron-electron interaction,
1/r12:

hpqrs ≡
∫

dx1dx2

χ∗p(x1)χ∗q(x2)χr(x2)χs(x1)

r1,2

= 〈ϕi|〈ϕj |H(2)|ϕk〉|ϕl〉δσiσjδσkσl . (4)

In Eq. (3), ∇2 is the Laplacian with respect to the electron spatial coordinates.
The positive valued scalars rα,x and r1,2 are the Euclidean distance between
the αth nucleus and the electron and the Euclidean distance between the two
electrons.
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2.1. Representing the molecular Hamiltonian in terms of quantum bits

Just as classical computation is based on the notion of a bit, the basic unit of
quantum information is the quantum bit (qubit). In principle, any two-level
quantum mechanical system can be considered a qubit. Practical requirements
for qubits and their manipulation was originally outlined by DiVincenzo [17]
and experimental progress towards satisfying the DiVincenzo criteria was re-
cently reviewed [4]. Since two-level systems can be described as spin-half par-
ticles, the relevant (Pauli) spin matrices are:

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
.

Together with the identify matrix, the Pauli matrices form an operator basis
for two-level systems. The basis of σz is called the computational basis with |0〉
(|1〉) labeling the upper (lower) eigenstate. There are several computationally
equivalent models of describing quantum computation but here we focus on the
circuit model of quantum computation. A more comprehensive introduction
of quantum computation can be found in Ref. [18].

The quantum circuit model uses a set of elementary gates to reproduce the
action of arbitrary unitary transforms. A universal gate set requires single
qubit gates and any two-qubit entangling gate. The two-qubit CNOT gate
leaves one qubit space invariant and acts with σx on the second qubit when the
first qubit is in the state |1〉. The gate is given as CNOT= |1〉〈1|⊗σx+|0〉〈0|⊗1.
The set, Rx, Ry, and Rz gates can generate any single qubit gate were Rn is
defined as exp[−iσnθ/2] for real θ.

For experimental addressability, the qubits must, in general, be distinguish-
able. However, the electrons of the molecular system are indistinguishable.
The Jordan-Wigner transform is used to circumvent this issue by expressing
Fermionic operators in terms of the Pauli spin operators {σx, σy, σz,1} that
correspond to the algebra of distinguishable spin 1/2 particles [10, 19]. The
Jordan-Wigner transform is given by:

aj ⇔ 1⊗j−1 ⊗ σ+ ⊗ σz⊗N−j−1 (5a)

a†j ⇔ 1⊗j−1 ⊗ σ− ⊗ σz⊗N−j−1 (5b)

where σ+ ≡ σx+iσy

2 = |0〉〈1| and σ− ≡ σx−iσy
2 = |1〉〈0|. The qubit state |0 . . . 0〉

corresponds to the vacuum state and the string of σz operators, preserve the
commutation relations in Eq. (2) since σz and σ± anti-commute. The spin
variable representation of relevant operators after the Jordan-Wigner trans-
formation is given in Table A2 found in the appendix.

3. Efficient approximations of the unitary propagator by a Trotter
decomposition

A key element of the quantum computer simulation scheme that aids in achiev-
ing an exponential speed up over classical computation involves the use the
Trotter-Suzuki formula, given below, where the quantum circuit for the uni-
tary propagator is given by a composition of smaller circuits that correspond
to the exponential of each of N4 two-electron terms and each of the N2 one-
electron terms of Eq. (1). The advantage of using such a decomposition for a
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quantum computer is that one does not need to access nor directly optimize
the parameters of the full N -body wave function. The number of parame-
ters grows rapidly with system size and description hindering methods like
full configuration interaction (FCI), but in a quantum computer measurement
collapses the wave function to the desired state. To perform quantum measure-
ment as described in Section 4, it suffices to execute the circuit corresponding
to the Trotter-Suzuki for a sufficiently-small time step. Next, we describe the
quantum circuits for the exponential of the products of Pauli operators neces-
sary for simulating Jordan-Wigner transformed operators. The Trotter-Suzuki
approach is explained below.

3.1. Quantum circuit primitives

Each term of Eq. (1) can be exponentiated using the universal gate set de-
scribed in Subsection 2.1 after performing the Jordan-Wigner transformation
to Pauli spin matrices. We will outline the procedure for generating quantum
circuits for chemical systems and summarise the results in Fig. A1. The con-
struction of quantum circuits for general Fermionic Hamiltonians is further
discussed in Ref. [10, 20, 21].

To understand the exponential map of the product of Pauli spin matrices,
first consider the exponential map of two σz operators. To create the unitary
gate exp[−i θ2(σz⊗σz)], the CNOT gate can be used to first entangle two qubits,
then the Rz gate is applied, followed by a second CNOT gate that disentangles
the qubit pair [18].

• •
�������� Rz ��������

This construction can be generalized to more qubits by using additional CNOT
gates. For example, the circuit for the three-body operator involving three
qubits, exp[−i θ2(σz ⊗ σz ⊗ σz)], is simulated by the following quantum circuit:

• •
�������� • • ��������

�������� Rz ��������
As seen from the three-qubit example above, this construction can be readily
extended for n-fold products of σz operators.

3.1.1. Construction of different Pauli matrix products

If one requires a different product of Pauli matrices besides the product
of σz as described above, a change of basis can be accomplished using the
appropriate unitary transformation: Hadamard transforms between σx basis
and σz basis, and Y = Rx(−π/2) = exp(iσxπ/4) transforms from σz basis to
σy basis and Y† from σy to σz. In matrix form,

H =
1√
2

[
1 1
1 −1

]
Y =

1√
2

[
1 i
i 1

]
.

Circuits of this form form the basis for the construction of the molecular
unitary propagator as illustrated in Fig. A1 where the circuit representations
are given.
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3.2. Trotter decomposition

Using the second-quantized representation allows for a straightforward decom-
position of the exponential map of each term of the Hamiltonian. However, the
terms of this decomposition do not always commute. The goal of the Trotter
decomposition is to approximate the time evolution operator of a set of non-
commuting operators. The operators are exponentiated individually for small
time steps and the procedure is repeated such that their product provides a
reasonable approximation to the exponentiation of the sum. Using this approx-
imation, the construction of the time propagator can be efficiently carried out
on a quantum computer provided that the Hamiltonian can be decomposed
into a sum of local Hamiltonians [6]. The first-order Trotter decomposition is
given by:

e−iHt =
(
e−ih1∆te−ih2∆t · · · e−ihN∆t

) t

∆t

+O(t∆t), (6)

where t/∆t is the Trotter number [22]. As the Trotter number tends to infinity,
or equivalently ∆t→ 0, the error in the approximation vanishes. If t/∆t is not
an integer, the remainder is simulated as another Trotter time slice. There exist
higher order approximates (Suzuki-Trotter formulas) which reduce the error
of approximation even further. For instance, the second order approximations
is given by:

e−iHt ≈
((
e−ih1

∆t

2 · · · e−ihN−1
∆t

2

)
e−ihN∆t

(
e−ihN−1

∆t

2 · · · e−ih1
∆t

2

)) t

∆t

+O(t(∆t)2).

(7)
Higher order approximations take increasingly more complicated forms [22]

and were first studied in the context of black box quantum simulation of sparse
Hamiltonians by Berry et al. [23]. They considered Hamiltonians composed of
m efficiently implementable terms and showed that the number of exponen-
tials cannot scale better than linear in the time desired and the maximum
frequency of the full Hamiltonian. The proof shows that if sublinear simula-
tion of arbitrary Hamiltonians were possible, bounds for the power of quantum
computation proven in Ref. [24] could be violated leading to a contradiction.

4. The phase estimation algorithm

In this section, we describe how to obtain molecular energies given the time
evolution of the molecular Hamiltonian described above. The time propagator
of the Hamiltonian, along with a stationary state, can be used to convert eigen-
values into relative phases. The relative phase can then be obtained using the
quantum phase estimation algorithm (PEA). To determine an eigenvalue asso-
ciated with an eigenstate, consider the phase an eigenstate of the Hamiltonian
H evolving dependent on a register qubit:

|0〉|ψn〉+ e−iHt|1〉|ψn〉 = |0〉|ψn〉+ e−iEnt|1〉|ψn〉. (8)

By letting En = 2π(φ − K)/t where K is an integer and 0 ≤ φ < 1, the
unknown eigenvalue becomes encoded in the relative phase of the register
qubit quantum state as |0〉 + e−2πi(φ−K)|1〉 [7, 25, 26]. The binary expansion
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|0〉 H • Sk H NM



 jk

|ψ〉 U2k |ψ〉

Figure 2. Iterative phase estimation circuit for obtaining the kth qubit. The phase is represented
using a binary decimal expansion φ = 0.j0j1j2j3 · · · jn. To gain precision in the algorithm, one
adjusts the parameterized gate Sk according to the values of all previous obtained bits. This U is a
representation of the propagator of the system being simulated. Acting on the eigenstate with this
operator advances the phase of the state.

of φ:

φ = 0.j0j1j2j3 · · · =
(
j0
2

)
+

(
j1
4

)
+

(
j2
8

)
+

(
j3
16

)
+ . . . (9)

can then be recovered from measurements performed on the register qubits.
The PEA can be accomplished in several different ways depending on the

technology available and in the recent experimental implementations, the it-
erative phase estimation algorithm [25, 27–29] was used. We present it here
for completeness.

The iterative method relies on the use of the gate Sk depicted in Fig. 2. Data
is read from the least significant digit first, allowing the counter-rotation Sk
to be a function of the L− k− 1 digits that were previously obtained where L
is the least significant digit of the binary expansion. The form of the Sk gate
is given by:

Sk =

[
1 0
0 Φk

]
, with Φk = exp

[
2πi

L−k+1∑
l=2

jk+l−1

2l

]
.

This gate removes the L − k − 1 least significant digits so the state of quan-
tum computer becomes, (|0〉+ exp[−iπjk]|1〉)|ψn〉 where jk is zero or one. Fi-
nally, effecting the Hadamard transformation described in Section 3.1.1 leads
to |jk〉|ψn〉 and measurement of the register in the {|0〉, |1〉} basis yields the
value of jk. When the binary expansion of φ is length L, the measurements
are deterministic, otherwise the remainder can cause errors as discussed in
Refs. [18, 28].

The evolution of the eigenstate must be dependent on the register qubit
requiring that the construction of the unitary evolution operator described in
Section 3.1 be modified. The constructions listed in Fig. A1 only need to be
slightly modified; since the underlying constructions rely on Rz gates, changing
these rotations into controlled Rz rotations (|1〉〈1|⊗Rz+|0〉〈0|⊗1) is sufficient
to make the entire unitary dependent on the readout qubit.

Once an estimated phase is obtained, it must be inverted to obtain the
energy. Given bounds for the energy eigenvalue, [Emin, Emax), the time of
evolution is selected as Emax − Emin = 2π/t ≡ ω and an energy shift of Es is
used to make (Es − Emin)/ω an integer and then K = (Es − Emin)/ω. The
energy shift Es when obtaining the k-th bit of φ is effected by a gate on the
register qubit which applies a phase of exp(i2kEst) to the qubit if it is in state
|1〉 and does nothing otherwise. Using these parameters the measured value of
φ corresponds to the value of the energy, Eφ = ω(φ−K) + Es.

As noted in Ref. [30], in phase estimation algorithm the number of uses of
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U(t) scales exponentially with the number of bits desired from φ. This is a con-
sequence of the Fourier uncertainty principal; the more information required
in the frequency domain the longer the propagation time. When the unitary
is decomposed into gates, this means an exponential increase in the gates is
required for an exponential increase in the precision of the measurement.

To obtain the correct values of jn from Eq. (9), the PEA relies on the
assumption that the input vector to the algorithm is close to an eigenvector
of the controlled unitary operator being used. Since each qubits represents
the occupancy of molecular orbitals in the N -electron wave function, the HF
guess for the ground state |ψHF0 〉 requires no superposition of states and is thus
straightforward to prepare. For |〈ψHF0 |ψFCI0 〉| = 1 − ε, where ε is small, the
phase estimation algorithm can be applied to retrieve an estimate of the ground
state energy. Simultaneously, the state of the system will collapse to |ψFCI0 〉
when measured in the HFCI basis (via PEA) with high probability [25, 26].
If the Hartree-Fock guess is insufficient, more sophisticated state preparation
procedures exist and these were reviewed in Ref. [12]. The adiabatic scheme
for state preparation [7] is analyzed in the following section.

5. Adiabatic state preparation

This section explains the method of preparing an input state to the simulation
algorithm using adiabatic quantum computation [7, 31, 32]. First, consider the
Hartree-Fock wave function as an approximation to the FCI wave function.
This is the output of an classical algorithm returning, in polynomial time,
a computational basis state where the qubits which correspond to occupied
molecular orbitals are in the state |1〉 with the remaining qubits in state |0〉.
To increase overlap of the wave function, after the system is prepared in state
|ψHF0 〉, the Hamiltonian HFCI is slowly applied and the actual ground state
is recovered by adiabatic evolution. Consider a smooth one-parameter family
of adiabatic path Hamiltonians,

H(s) = (1− s)HHF + sHFCI , (10)

for monotonic s ∈ [0, 1]. This was the adiabatic path originally proposed by
us in Ref. [7]. Other paths may be used as in Ref. [33] but in this study we
restrict our attention to evolution of the form in Eq. (10).

Let the instantaneous energies of H(s) be given by the sequence,

E0(s) < E1(s) ≤ · · · ≤ EN−1(s), (11)

then the adiabatic state preparation procedure is efficient whenever the total
run time, T , satisfies the following:

T � min
0≤s≤1

(E1(s)− E0(s))−2 , (12)

according to known results relating the adiabatic theorem to complexity the-
ory [31]. After adiabatic evolution, the state of the system is |ψFCI0 〉, which
is the ground state of the molecular Hamiltonian HFCI

0 . Modified versions
of this procedure exist using decoherence to achieve faster evolution and are
discussed in Refs. [34, 35].

Assume that the adiabatic evolution induced transitions into higher energy
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Table 2. The one-electron and two-

electron integrals defined in Eqs. (3) and

(4) are evaluated using the molecular spa-

tial orbitals obtained from a restricted

Hartree-Fock calculation at an internu-

clear distance of 1.401000 atomic units

(7.414·10−11 m) [42].

Spatial integral Value (a.u.)

hϕ1ϕ1 -1.252477
hϕ2ϕ2 -0.475934
hϕ1ϕ2 0

h(ϕ1ϕ1ϕ1ϕ1) 0.674493

h(ϕ2ϕ2ϕ2ϕ2) 0.697397

h(ϕ2ϕ1ϕ1ϕ2) 0.663472

h(ϕ1ϕ2ϕ1ϕ2) 0.181287
h(ϕ1ϕ1ϕ2ϕ2) 0.181287
h(ϕ2ϕ2ϕ1ϕ1) 0.181287

states and so the un-normalized state of the system is |ψFCI0 〉 + λ|k〉, where
|k〉 ∈ H = 1− |ψFCI0 〉〈ψFCI0 |. While the error in the wave function is linear in
λ < 1, the overestimate of the energy in the expectation value 〈HFCI

0 〉 is only
quadratic.

It is unclear how this method will scale. It is possible to prepare a desired
ground state efficiently provided that the gap between the ground and excited
states is sufficiently large [31]. This depends on the adiabatic path taken.
Finding the ground state energy of a random Hamiltonian, even for simple
models, is known to be complete for the quantum analogue of the class NP [36,
37].

There are other ways to perform state preparation, for example, by going
beyond Hartree-Fock theory [38, 39]. A broader discussion of state preparation
for quantum simulation can be found in Refs. [12, 40]. Recently, in Ref. [41],
the effects of initial states for the phase estimated quantum simulation CH2

molecules was studied for a variety of geometries and eigenstates using initial
guesses obtained via multi-configuration approaches.

6. Simulating the hydrogen molecule

To illustrate the algorithmic details of a scalable simulation of quantum sys-
tems, the hydrogen molecule in a minimal basis is used as an instructive exam-
ple. The minimal basis is the minimum number of spatial-functions needed to
describe the system and in the case of H2, one spatial-function is needed per
atom denoted ϕH1 and ϕH2. In this simple case, the Hartree-Fock procedure
is not necessary as the molecular spatial-orbitals are determined by symmetry
and are given by ϕu = ϕH1 + ϕH2 and ϕg = ϕH1 − ϕH2. These two spatial
functions correspond to four orbitals that will be identified as:

|χ1〉 = |ϕg〉|α〉, |χ2〉 = |ϕg〉|β〉, |χ3〉 = |ϕu〉|α〉, |χ4〉 = |ϕu〉|β〉. (13)

The form of the spatial function is determined by the basis set used. The
STO-3G basis is a common minimal basis that approximates a single electron
spatial Slater type orbitals (STO), with a contraction of three real Gaussian
functions [1]. Using this orbital basis, the spatial integrals of the Hamiltonian
were evaluated in Table 2 for H2 at bond distance 1.401000 atomic units
(7.414·10−11 m).
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Considering H from Eq. (1) as H(1) +H(2) we have,,

H(1) = h11a
†
1a1 + h22a

†
2a2 + h33a

†
3a3 + h44a

†
4a4 (14)

The following circuit applies the single-electron propagator for a time t:

PEA • • • •

χ1 T(h11t)

χ2 T(h22t)

χ3 T(h33t)

χ4 T(h33t)

The gate T is defined as:

T(θ) =

[
1
e−iθ

]
. (15)

The two electron Hamiltonian can also be expanded. As electrons are indis-
tinguishable,

hpqrs =

∫
dx1dx2

χp(x1)χq(x2)χr(x2)χs(x1)

r12
=

∫
dx2dx1

χp(x2)χq(x1)χr(x1)χs(x2)

r12
= hqpsr,

and a†pa
†
qaras = a†qa

†
pasar, the two electron Hamiltonian can be simplified as:

H(2) = h1221a
†
1a
†
2a2a1 + h3443a

†
3a
†
4a4a3 + h1441a

†
1a
†
4a4a1 + h2332a

†
2a
†
3a3a2

+ (h1331 − h1313) a†1a
†
3a3a1 + (h2442 − h2424) a†2a

†
4a4a2

+<(h1423)(a†1a
†
4a2a3 + a†3a

†
2a4a1) + <(h1243)(a†1a

†
2a4a3 + a†3a

†
4a2a1)

+=(h1423)(a†1a
†
4a2a3 − a†3a

†
2a4a1) + =(h1243)(a†1a

†
2a4a3 − a†3a

†
4a2a1)(16)

The first six terms,

h1221a
†
1a
†
2a2a1 + h3443a

†
3a
†
4a4a3 + h1441a

†
1a
†
4a4a1

+ h2332a
†
2a
†
3a3a2 + (h1331 − h1313) a†1a

†
3a3a1 + (h2442 − h2424) a†2a

†
4a4a2

can be simulated using the system Hamiltonian that employs only commut-
ing two-local terms described in Section 3. Notice after the Jordan-Wigner
transform of the relevant operator we have:

∑
p<q

(hpqqp − hpqpqδσpσq)a†pa†qaqap =

(
1

4

∑
p<q

(hpqqp − hpqpqδσpσq)

)
1

−1

4

∑
q

∑
p6=q

(hpqqp − hpqpqδσpσq)

σzq

+
∑
p<q

(hpqqp − hpqpqδσpσq)
4

σzpσ
z
q . (17)
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The factor of 1/2 is accounted for because the indistinguishably of the electrons
reduces the summation in Eq. (1).

Following Eq. (17), let Θ ≡ (1/4)
∑

p<q(hpqqp − hpqpqδσpσq) and θp ≡∑
q:p 6=q(hpqqp− hpqpqδσpσq). Then following circuit illustrates the one and two-

local interactions required to implement Eq. (17):

PEA T(Θt) • • • •

χ1 Rz(θ1t)

χ2 Rz(θ2t)

χ3 Rz(θ3t)

χ4 Rz(θ4t)

Defining ηpq ≡ 1
4(hpqqp − hpqpqδσpσq), the three local interactions can be de-

picted as:

PEA • • • • • •

χ1 • • • • • •

χ2 • • • • ��
��	
� Rz(η12t)
��
��	
�

χ3 • • ��
��	
� Rz(η23t)
��
��	
� ��
��	
� Rz(η13t)

��
��	
�
χ4 ��
��	
� Rz(η34t)

��
��	
� ��
��	
� Rz(η24t)
��
��	
� ��
��	
� Rz(η14t)

��
��	
�
Each term commutes thus can be realized in any order.

The remaining terms are strictly real leaving:

h1423(a†1a
†
4a2a3 + a†3a

†
2a4a1) + (h1243)(a†1a

†
2a4a3 + a†3a

†
4a2a1).

Since the orbitals are real, the integrals h1243 = h1423 are equivalent. Therefore,

we are left with the task of simulating 2h1423(a†1a
†
4a2a3 + a†3a

†
2a4a1).

Consider the general term a†pa
†
qaras+a

†
sa
†
raqap. Due to the anti-commutation

rules, all sets of operators corresponding to a set of four distinct spin-orbitals,
(p, q, r, s), are simulated using the same circuit. This is due to the fact that
the Jordan-Wigner of each operator generates same set of operators (namely,
the eight combinations involving an even number of σx and σy operators).
However, depending on if σ+ or σ− is used each term of spin operators will
have a different sign. If we define:

h(1) = (hpqrsδσpσsδσqσr − hqprsδσpσrδσqσs) (18)

h(2) = (hpsqrδσpσrδσqσs − hspqrδσpσqδσrσs) (19)

h(3) = (hprsqδσpσqδσrσs − hprqsδσpσsδσqσr) (20)

then

1

2

∑
hpqrsa

†
pa
†
qaras + a†sa

†
raqap =

1

8

 q−1⊗
k=p+1

s−1⊗
k=r+1

σzk

 (21)


(σxpσ

x
q σ

x
rσ

x
s + σypσ

y
qσ

y
rσ

y
s )(−h(1) − h(2) + h(3))

+(σxpσ
x
q σ

y
rσ

y
s + σypσ

y
qσxrσ

x
s )(+h(1) − h(2) + h(3))

+(σypσxq σ
y
rσxs + σxpσ

y
qσxrσ

y
s )(−h(1) − h(2) − h(3))

+(σypσxq σ
x
rσ

y
s + σxpσ

y
qσ

y
rσxs )(−h(1) + h(2) + h(3))

 .



October 7, 2010 0:55 arXiv:1001.3855 h2.arxiv

arXiv:1001.3855 13

(a) Plot of gates to simulate the H2

versus time step used in the first order
Trotter approximation.

(b) Plot of relative error of approxima-
tion as a function of gates used.

Figure 3. The unitary propagator corresponding to this Hamiltonian is approxi-
mated using a first order Trotter decomposition and these graphs provide analysis
of the Trotter error and the number of gates used at each Trotter number, Tn. The
unitary propagator is simulated by applying each small term of the second quantized
Hamiltonian for small time steps dt and repeating the process Tn = t/dt times. As
dt decreases the error in the approximation decreases at the expense of more gates.
Zero error represents the eigenvalue of the Hamiltonian of H2 in the minimal basis at
a separation of 1.4 atomic units. The horizontal line of (b) represents the threshold
for energy error of 10−4 atomic units.

Applying this to the hydrogen molecule, observe that h(1) = −h(2) and h(3) =
0 indicating that only the terms {σxσxσyσy, σyσyσxσx, σyσxσxσy, σxσyσyσx}
must be considered. The resulting quantum circuit is illustrated in Table A3
found in the appendix.

To assess the Trotter error, we simulated this circuit using a classical com-
puter using the first-order Trotter decomposition. The pseudo-code for the H2

simulation is given in Appendix A and the results are summarized in Fig. 3.
Although the gates increase with the Trotter number, reducing the Trotter
error of the dynamics is only practical if the measurement is precise enough
to detect such errors. Thus, in practice, there is a balance between the Trotter
number selected and the number of bits to be obtained by the measurement
procedure.

7. Conclusions

In this paper, we mapped the full configuration interaction (FCI) method
from quantum chemistry into a quantum algorithm. We reviewed the elec-
tronic structure problem, techniques of creating the simulated propagator,
and explicitly illustrated this construction for H2 for a single timestep of a
first-order Trotter expansion.

Applicability of quantum simulation comes down to the ability to propagate
the simulated system with a specified error tolerance. Since phase estimation
is essentially a Fourier transform of the frequency of phase oscillations (which
are proportional to the eigenenergy) to obtain more precise determination of
the frequency, a longer propagation time is necessary. This longer time requires
more manipulations of the computational system.

This paper does not consider the effect of errors, however it is an important
consideration that needs to be taken into account. Quantum error correction
methods have been developed to counteract the unwanted effect of quantum
noise, however fault tolerant constructions require redundant qubits and only
allow a discrete set of gates to be used [18, 43]. This is not a serious cause
for concern as the conversion from a continuous set of gates to a discrete set
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of gates only requires a poly-logarithmic overhead [44]. Last year, Clark et
al. [45] estimated the resources required to compute the ground state of a one
dimensional transverse Ising model and found, using experimental parameters
from a proposed ion trap quantum computing implementation, that the fault
tolerant constructions would be too costly for straight-forward applications
to simulation. This suggests that quantum simulation without quantum error
correction is more feasible for the near future.

In the coming future, small scale experiments such as the simulation of
the circuits we have presented for H2 on a quantum computer will likely be
possible. Experimental realizations of quantum chemistry on quantum devices
have only recently been achieved [13, 14]. We hope that the present paper will
continue the interest by giving an example of a scalable construction of the
unitary propagator for the H2 molecule in an explicit form, which poses the
next logical challenge for experimental realization.
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Appendix A. Pseudo-code for hydrogen molecule simulation

Here the decomposition of the propagator of H2 Hamiltonian is given using
standard quantum gates. The entire unitary operator is controlled via the ‘Reg-
ister’ qubit. This qubit (or qubits) would be measured using any of a variety
of phase estimation techniques. Additionally, the non-commuting terms of the
Hamiltonian introduce error which can be reduced using Trotter time slicing
or by using higher order Trotter-Suzuki decompositions. The time slicing idea
is to alternatively apply each of the non-commenting unitary operators each
for a fraction of the total time. As the length of the time slices goes to zero the
error of the approximation will as well. The single electron operators and the
number-number operators commute amongst themselves. However, the two-
body and one-body excitation-excitation operators do not commute with the
other operators but each excitation-excitation operator (XXXX, XXYY, etc.)
commute. Qubits are named: Register, Q1, Q2, Q3, Q4. The integrals are hij
and hijkl are given in Table 2. Additionally, we define nij = (hijji − hjiji)/4.
Note only h1313 and h2424 are the only non-zero terms due to spin orthogo-
nality. Following the main text, Let Θ ≡ (1/4)

∑
p<q(hpqqp − hpqpqδσpσq) and

θp ≡
∑

q:p 6=q(hpqqp − hpqpqδσpσq).
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Gate Target qubit Control qubit Parameter

Hadamard Register

Single Electron Operators
cPhase Q1 Register h11t
cPhase Q2 Register h22t
cPhase Q3 Register h33t
cPhase Q4 Register h44t

Two Electron Operators: number-number operator
Phase Register Θt
cRz Q1 Register -θ1t
cRz Q2 Register -θ2t
cRz Q3 Register -θ3t
cRz Q4 Register -θ4t
cNot Q4 Q3
cRz Q4 Register 2n34t
cNot Q4 Q3
cNot Q4 Q2
cRz Q4 Register 2n24t
cNot Q4 Q2
cNot Q4 Q1
cRz Q4 Register 2n14t
cNot Q4 Q1
cNot Q3 Q2
cRz Q3 Register 2n23t
cNot Q3 Q2
cNot Q3 Q1
cRz Q3 Register 2n13t
cNot Q3 Q1
cNot Q2 Q1
cRz Q2 Register 2n12t
cNot Q2 Q1

Two Electron Operators: excitation-excitation operator
XXYY
Hadamard Q1
Hadamard Q2
Rx Q3 -π/2
Rx Q4 -π/2
cNot Q2 Q1
cNot Q3 Q2
cNot Q4 Q3
cRz Q4 Register -t(h1423 + h1243)/4
cNot Q4 Q3
cNot Q3 Q2
cNot Q2 Q1
Rx Q4 π/2
Rx Q3 π/2
Hadamard Q2

continued on next page
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Gate Target qubit Control qubit Parameter

Hadamard Q1
YYXX
Rx Q1 -π/2
Rx Q2 -π/2
Hadamard Q3
Hadamard Q4
cNot Q2 Q1
cNot Q3 Q2
cNot Q4 Q3
cRz Q4 Register -t(h1423 + h1243)/4
cNot Q4 Q3
cNot Q3 Q2
cNot Q2 Q1
Hadamard Q4
Hadamard Q3
Rx Q2 π/2
Rx Q1 π/2
XYYX
Hadamard Q1
Rx Q2 -π/2
Rx Q3 -π/2
Hadamard Q4
cNot Q2 Q1
cNot Q3 Q2
cNot Q4 Q3
cRz Q4 Register t(h1423 + h1243)/4
cNot Q4 Q3
cNot Q3 Q2
cNot Q2 Q1
Hadamard Q4
Hadamard Q3
Rx Q2 π/2
Rx Q1 π/2
YXXY
Rx Q1 π/2
Hadamard Q2
Hadamard Q3
Rx Q4 π/2
cNot Q2 Q1
cNot Q3 Q2
cNot Q4 Q3
cRz Q4 Register t(h1423 + h1243)/4
cNot Q4 Q3
cNot Q3 Q2
cNot Q2 Q1
Rx Q1 −π/2
Hadamard Q2
Hadamard Q3
Rx Q4 −π/2
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Table A1. The quantum circuits corresponding to evolution of the listed Hermitian second-quantized operators. Here, p, q,

r, and s are orbital indices corresponding to qubits such that the population of state |1〉 determines the occupancy of the

orbitals. It is assumed that the orbital indices satisfy p > q > r > s. These circuits were found by performing the Jordan-

Wigner transformation given in Eqs. (5b) and (5a) and then propagating the obtained Pauli spin variables [20]. In each

circuit, θ = θ(h) where h is the integral preceding the operator. Gate T(θ) is defined by T|0〉 = |0〉 and T|1〉 = exp(−iθ)|1〉,
G is the global phase gate given by exp(−iφ)1, and the change-of-basis gate Y is defined as Rx(−π/2). Gate H refers to the

Hadamard gate. For the number-excitation operator, both M = Y and M = H must be implemented in succession. Similarly,

for the double excitation operator each of the 8 quadruplets must be implemented in succession. The global phase gate must

be included due to the phase-estimation procedure. Phase estimation requires controlled versions of these operators which

can be accomplished by changing all gates with θ-dependence into controlled gates.

Second quantized operators Circuit

Number
operator

hppa
†
pap T(θ)

Excitation
operator

hpq(a†paq+a†qap) p H •
�
�
�

•
�
�
�

H Y •
�
�
�

•
�
�
�

Y

q H �������� Rz(θ) �������� H Y �������� Rz(θ) �������� Y

Coulomb and
exchange operators

hpqqpa
†
pa
†
qaqap

p G(θ) Rz(θ) • •
q Rz(θ) �������� Rz(θ) ��������

Number-excitationa

operator
hpqqr (a†pa

†
qaqar

+a†ra
†
qaqap)

p M •�
�

•�
�

M

q + 1 �������� • • ��������
q

q − 1 �������� •�� •�
� ��������

r M �������� Rz(θ) �������� M

where M={H,Y}

Double excitation
operator

hpqrs (a†pa
†
qaras

+a†sa
†
raqap)

p M1 •

�
�
�
�

•

�
�
�
�

M†1

/

q M2
�������� • • �������� M†2

/

r M3
�������� •

�
�
�
�

•

�
�
�
� �������� M†3

/

s M4
�������� Rz(θ) �������� M†4

where (M1,M2,M3,M4)=
{(H,H,H,H), (Y,Y,Y,Y),
(H,Y,H,Y),(Y,H,Y,H),
(Y,Y,H,H),(H,H,Y,Y),
(Y,H,H,Y), (H,Y,Y,H)}

Notation: •
�
�
�

•
�
�
�

• •�������� • • ��������
≡ �������� • • ���������������� �������� �������� ��������

aThe spin variable representation of this operator depends on whether q lies in the range p to r or outside of it.
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