64 research outputs found

    Efficient Computation of Invariant Tori in Volume-Preserving Maps

    Full text link
    In this paper we implement a numerical algorithm to compute codimension-one tori in three-dimensional, volume-preserving maps. A torus is defined by its conjugacy to rigid rotation, which is in turn given by its Fourier series. The algorithm employs a quasi-Newton scheme to find the Fourier coefficients of a truncation of the series. This technique is based upon the theory developed in the accompanying article by Blass and de la Llave. It is guaranteed to converge assuming the torus exists, the initial estimate is suitably close, and the map satisfies certain nondegeneracy conditions. We demonstrate that the growth of the largest singular value of the derivative of the conjugacy predicts the threshold for the destruction of the torus. We use these singular values to examine the mechanics of the breakup of the tori, making comparisons to Aubry-Mather and anti-integrability theory when possible

    Statistics of the Island-Around-Island Hierarchy in Hamiltonian Phase Space

    Get PDF
    The phase space of a typical Hamiltonian system contains both chaotic and regular orbits, mixed in a complex, fractal pattern. One oft-studied phenomenon is the algebraic decay of correlations and recurrence time distributions. For area-preserving maps, this has been attributed to the stickiness of boundary circles, which separate chaotic and regular components. Though such dynamics has been extensively studied, a full understanding depends on many fine details that typically are beyond experimental and numerical resolution. This calls for a statistical approach, the subject of the present work. We calculate the statistics of the boundary circle winding numbers, contrasting the distribution of the elements of their continued fractions to that for uniformly selected irrationals. Since phase space transport is of great interest for dynamics, we compute the distributions of fluxes through island chains. Analytical fits show that the "level" and "class" distributions are distinct, and evidence for their universality is given.Comment: 31 pages, 13 figure

    Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of Time Series

    Full text link
    Topology based analysis of time-series data from dynamical systems is powerful: it potentially allows for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain a natural discretization that is more tightly connected with the invariant density of the time series itself. The time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map. We obtain conditions under which this witness map gives an outer approximation of the dynamics, and thus can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example using data from the classical H\'enon map.Comment: laTeX, 9 figures, 32 page

    Moser's quadratic, symplectic map

    Full text link
    In 1994, J\"urgen Moser generalized H\'enon's area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser's six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser's map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled H\'enon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2D planes through the phase space and by 3D slices through the tori.Comment: 12 pages, 6 figures. For videos see https://www.comp-phys.tu-dresden.de/supp

    Nonexistence of Invariant Tori Transverse to Foliations: An Application of Converse KAM Theory

    Full text link
    Invariant manifolds are of fundamental importance to the qualitative understanding of dynamical systems. In this work, we explore and extend MacKay's converse KAM condition to obtain a sufficient condition for the nonexistence of invariant surfaces that are transverse to a chosen 1D foliation. We show how useful foliations can be constructed from approximate integrals of the system. This theory is implemented numerically for two models, a particle in a two-wave potential and a Beltrami flow studied by Zaslavsky (Q-flows). These are both 3D volume-preserving flows, and they exemplify the dynamics seen in time-dependent Hamiltonian systems and incompressible fluids, respectively. Through both numerical and theoretical considerations, it is revealed how to choose foliations that capture the nonexistence of invariant tori with varying homologies.Comment: 25 pages, 18 figure
    • …
    corecore