782 research outputs found

    Actinometry of Hydrogen Plasmas

    Get PDF
    Optical emission spectroscopy (OES) can be used to map the electron energy distribution of hydrogen plasmas. Using actinometry, a type of OES where trace amounts of noble gases are introduced, the effect of discharge power on the electron temperature of hydrogen plasmas was explored. This was done using argon and krypton as actinometers for low pressure hydrogen plasmas. It was determined that the electron temperature decreased with respect to power supplied to the discharge

    The Structure of Debt and Active Equity Investors: The Case of the Buyout Specialist

    Get PDF
    This paper examines the role buyout specialists play in structuring the debt used to finance the LBO and in monitoring management in the post-LBO firm. We find that when buyout specialists control the majority of the post-LBO equity, the LBO transaction is likely to be financed with less short-term and/or senior debt and less likely to experience financial distress. We also find that buyout specialists have greater board representation on smaller boards, suggesting that they actively monitor managers, and that for these transactions, using debt with tighter terms does not significantly increase the firm\u27s performance. In contrast, in all other transactions using such debt does significantly increase the firm\u27s performance. These findings suggest that active monitoring by a buyout specialist substitutes for tighter debt terms in monitoring and motivating managers of LBOs

    Hedging Effectiveness under Conditions of Asymmetry

    Get PDF
    We examine whether hedging effectiveness is affected by asymmetry in the return distribution by applying tail specific metrics to compare the hedging effectiveness of short and long hedgers using Oil futures contracts. The metrics used include Lower Partial Moments (LPM), Value at Risk (VaR) and Conditional Value at Risk (CVAR). Comparisons are applied to a number of hedging strategies including OLS and both Symmetric and Asymmetric GARCH models. Our findings show that asymmetry reduces in-sample hedging performance and that there are significant differences in hedging performance between short and long hedgers. Thus, tail specific performance metrics should be applied in evaluating hedging effectiveness. We also find that the Ordinary Least Squares (OLS) model provides consistently good performance across different measures of hedging effectiveness and estimation methods irrespective of the characteristics of the underlying distribution.Hedging Performance; Asymmetry; Downside Risk; Value at Risk, Conditional Value at Risk. JEL classification: G10, G12, G15. ____________________________________________________________________ John Cotter, Director of Centre for Financial Markets, Department of Banking and Finance, University College Dublin, Blackrock, Co. Dublin, Ireland, tel 353 1 716 8900, e-mail [email protected]. Jim Hanly, School of Accounting and Finance, Dublin Institute of Technology, tel 353 1 402 3180, e-mail [email protected]. The authors would like to thank the participants at the Global Finance Annual Conference for their constructive comments.

    Measuring Securities Market Efficiency in the Regulatory Setting

    Get PDF
    In Nov 1998, the SEC proposed a modification to the federal securities law disclosure requirements to facilitate the process of issuing new securities. Thomas and Cotter discuss how to determine when companies should be able to issue simplified disclosure documents

    Waltzing peakons and compacton pairs in a cross-coupled Camassa-Holm equation

    Full text link
    We consider singular solutions of a system of two cross-coupled Camassa-Holm (CCCH) equations. This CCCH system admits peakon solutions, but it is not in the two-component CH integrable hierarchy. The system is a pair of coupled Hamiltonian partial differential equations for two types of solutions on the real line, each of which separately possesses exp(-|x|) peakon solutions with a discontinuity in the first derivative at the peak. However, there are no self-interactions, so each of the two types of peakon solutions moves only under the induced velocity of the other type. We analyse the `waltzing' solution behaviour of the cases with a single bound peakon pair (a peakon couple), as well as the over-taking collisions of peakon couples and the antisymmetric case of the head-on collision of a peakon couple and a peakon anti-couple. We then present numerical solutions of these collisions, which are inelastic because the waltzing peakon couples each possess an internal degree of freedom corresponding to their `tempo' -- that is, the period at which the two peakons of opposite type in the couple cycle around each other in phase space. Finally, we discuss compacton couple solutions of the cross-coupled Euler-Poincar\'e (CCEP) equations and illustrate the same types of collisions as for peakon couples, with triangular and parabolic compacton couples. We finish with a number of outstanding questions and challenges remaining for understanding couple dynamics of the CCCH and CCEP equations

    The Square Root Depth Wave Equations

    Full text link
    We introduce a set of coupled equations for multilayer water waves that removes the ill-posedness of the multilayer Green-Naghdi (MGN) equations in the presence of shear. The new well-posed equations are Hamiltonian and in the absence of imposed background shear they retain the same travelling wave solutions as MGN. We call the new model the Square Root Depth equations, from the modified form of their kinetic energy of vertical motion. Our numerical results show how the Square Root Depth equations model the effects of multilayer wave propagation and interaction, with and without shear.Comment: 10 pages, 5 figure

    Surrogate Accelerated Bayesian Inversion for the Determination of the Thermal Diffusivity of a Material

    Full text link
    Determination of the thermal properties of a material is an important task in many scientific and engineering applications. How a material behaves when subjected to high or fluctuating temperatures can be critical to the safety and longevity of a system's essential components. The laser flash experiment is a well-established technique for indirectly measuring the thermal diffusivity, and hence the thermal conductivity, of a material. In previous works, optimization schemes have been used to find estimates of the thermal conductivity and other quantities of interest which best fit a given model to experimental data. Adopting a Bayesian approach allows for prior beliefs about uncertain model inputs to be conditioned on experimental data to determine a posterior distribution, but probing this distribution using sampling techniques such as Markov chain Monte Carlo methods can be incredibly computationally intensive. This difficulty is especially true for forward models consisting of time-dependent partial differential equations. We pose the problem of determining the thermal conductivity of a material via the laser flash experiment as a Bayesian inverse problem in which the laser intensity is also treated as uncertain. We introduce a parametric surrogate model that takes the form of a stochastic Galerkin finite element approximation, also known as a generalized polynomial chaos expansion, and show how it can be used to sample efficiently from the approximate posterior distribution. This approach gives access not only to the sought-after estimate of the thermal conductivity but also important information about its relationship to the laser intensity, and information for uncertainty quantification. We also investigate the effects of the spatial profile of the laser on the estimated posterior distribution for the thermal conductivity

    The Book within the Book in Mediaeval Illumination

    Get PDF

    Causation and plant succession in disturbed areas of southwestern Montana

    Get PDF

    Social group work with alcoholic patients in relation to their group experiences.

    Full text link
    Thesis (M.S.)--Boston Universit
    • …
    corecore