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Abstract
Optical emission spectroscopy (OES) can be used to map the electron energy distribution of hydrogen
plasmas. Using actinometry, a type of OES where trace amounts of noble gases are introduced, the effect of
discharge power on the electron temperature of hydrogen plasmas was explored. This was done using argon
and krypton as actinometers for low pressure hydrogen plasmas. It was determined that the electron
temperature decreased with respect to power supplied to the discharge.
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1. INTRODUCTION 

 Hydrogen plasmas are often used to passivate and modify materials, such as thin films. For 

example, methane is often highly diluted in hydrogen in the Plasma Enhanced Chemical Vapor 

Deposition of diamond thin films. Besides applied motivations, studying hydrogen plasmas is useful 

for modeling of reactive plasmas since it is the simplest kind of molecular plasma. In this work, we 

aim to understand how various parameters affect the electron temperature of hydrogen plasmas. 

The principal parameter characterizing the electron energy distribution is the electron temperature 

(Te). The electron temperature is a fundamental quantity that initiates all processes occurring in the 

plasma: dissociation, excitation, and ionization.  

Optical emission spectroscopy (OES) data can in principle be used to infer the electron 

energy distribution of hydrogen plasmas. OES is favorable as a method because it is passive and 

non-perturbative. This method is not particularly useful with pure hydrogen plasmas under the 

conditions used in this project, due to the complexity and overlap of molecular lines. Thus, a 

variation of OES known as actinometry was employed. Actinometry is a specific type of OES in 

which trace amounts of noble gases are introduced into the hydrogen plasma. An actinometer is an 

inert gas that does not perturb the hydrogen plasma. Because the actinometers have different, well-

defined energy thresholds and cross sections, their emission spectra can be used to probe different 

regions of the electron energy distribution of the plasma. Noble gases can serve as actinometers 

because in trace amounts they do not perturb the hydrogen plasma. 

In this work we use argon and krypton actinometers to study the electron kinetics of 

hydrogen plasmas.  Our objective is to determine the effect of power delivered to the discharge on 

the electron energy distribution in the plasma.  
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2. METHODOLOGY 

 Hydrogen is flowed into the vacuum chamber at 20.0 standard cubic centimeters per minute 

(sccm).  To maintain a partial pressure of 100 mTorr, the gate valve to the turbo pump that is 

pumping on the system was throttled. Each actinometer (argon or krypton) was maintained at 

approximately 2.0 mTorr. The plasma was generated using parallel plate electrodes in a vacuum 

chamber with a base pressure in the 10-7 Torr range. Radio frequency power (13.56 MHz) was 

applied to the electrodes to create the plasma discharge. A matching network was used to minimize 

the reflected power, thus maximizing the power delivered to the discharge. The experimental setup 

is shown below in Figure 1. 

 

Figure 1. Set-up of vacuum chamber for collection of optical emission data. 

Though a matching network is used, it should be noted that the actual power delivered to the 

discharge was much lower than that of the nominal power since more than 60% of the power 

delivered by the power supply is dissipated in the network. Each experimental trial consisted of 

2

Macalester Journal of Physics and Astronomy, Vol. 6, Iss. 1 [2018], Art. 3

http://digitalcommons.macalester.edu/mjpa/vol6/iss1/3



taking emission spectral data first with hydrogen and the actinometer present, and then removing 

the actinometer and taking a background (pure hydrogen) spectra. Optical emission data was 

collected with an Ocean Optics Spectrometer 3000.  

  Two actinometers are used to probe different energy regions of the electron temperature. 

Argon and krypton have different lines in their spectra with different threshold excitation energies. 

The range of threshold energies for krypton spectral lines is lower than that for argon spectral lines, 

as shown by table 1 in the appendix. 

 Data was taken at six different powers with each actinometer, ranging from 5 to 30 W of 

nominal power (i.e. without correction of power loss in the matching network). The data collected 

was used purely for comparative measurements of the change of electron temperature with power 

and thus absolute power measurements are not required. 

 

3. RESULTS 

 Krypton and argon spectra were obtained by subtracting the actinometer spectra from the 

background spectra as described above. Sample spectra are shown in Figures 2 and 3. 
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Figure 2. A krypton spectra obtained through the subtractive method from trials at 15 W nominal 

power and 100 mTorr H2 as described in the methodology section. 

 

 
 

Figure 3. An argon spectra obtained through the subtractive method from trials at 15 W nominal 

power and 100 mTorr H2 as described in the methodology section. 

 

As seen in these spectra, certain emission lines could not be fully resolved with the spectrometer 

used. Seven distinct krypton emission lines and five distinct argon emission lines were selected for 

comparative analysis. The intensities of each of the krypton peaks were then normalized to the 

intensities of the five argon peaks and then plotted with respect to nominal power. From this data, a 

final normalization occurred: each data set was normalized to the emission line ratio intensity value 

occurring at the lowest power so that any trend in the emission data would be easily observed. As 

seen in Figures 4-8, the ratio (Kr/Ar) increases with respect to increasing nominal power. This trend 

is consistent across all the emission data. 
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Figure 4. Krypton emission data of six emission lines (as noted in the legend) normalized to the 

argon 740 nm emission line at nominal powers ranging from 5-30W. 

 

 

 
 

Figure 5. Krypton emission data of six emission lines (as noted in the legend) normalized to the 

argon 752 nm emission line at nominal powers ranging from 5-30W. 

  

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25 30

Nominal Power (W)

Kr Data to Ar 740 nm

760.439 761.635 770.386 812.929 828.121 831.613 879.233

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25 30

Nominal Power (W)

Kr Data to Ar 752 nm

760.439 761.635 770.386 812.929 828.121 831.613 879.233

5

Cotter and Doyle: Actinometry of Hydrogen Plasmas

Published by DigitalCommons@Macalester College, 2018



 
 

Figure 6. Krypton emission data of six emission lines (as noted in the legend) normalized to the 

argon 765 nm emission line at nominal powers ranging from 5-30W. 

 

 

 
 

Figure 7. Krypton emission data of six emission lines (as noted in the legend) normalized to the 

argon 796 nm emission line at nominal powers ranging from 5-30W. 
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Figure 8. Krypton emission data of six emission lines (as noted in the legend) normalized to the 

argon 812 nm emission line at nominal powers ranging from 5-30W. 

 

4. DISCUSSION 

4.1. Qualitative Model 

 A key assumption within our work is that the electron energy distribution can be mapped 

with a Boltzmann distribution so that the single parameter of electron temperature can be used to 

characterize the distribution. This assumption is fairly common in fundamental studies of hydrogen 

plasmas. However, it is a simplification and deviations can occur, particularly the existence of a high 

energy tail. 
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Figure 9. A plot of two Maxwellian electron temperatures shown in red and blue as compared to 

two cross sections of different excitation thresholds. In this Figure,  represents the krypton 

excitation cross section, and represents the argon cross section.    

 

 Assuming the electron distribution is Maxwellian, the qualitative behavior of the actinometry 

results can be understood using a simple model for the krypton and argon electron collisional 

excitation cross sections Using this model, we can calculate the ratio of expected emission intensities 

for the argon lines versus the krypton lines as a function of electron temperature.  The difference  in 

excitation thresholds allows insight into how the electron temperature changes as a result of 

changing the amount of power delivered to the discharge. In other words, if we were to take a ratio 

of emission data of at least one emission line with each actinometer, comparing these ratios across 

powers allows us to make at least qualitative statements about how the electron temperature 

changes. Figure 9 shows that the ratio of a krypton emission line to an argon emission line would 

decrease with respect to nominal power if the electron temperature were increasing, and decrease if 

the electron temperature were increasing. Such a qualitative model provides the foundation for the 

quantitative model in the following section. 
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4.2. Quantitative Model 

 The quantitative model can be used to compare the ratio of krypton emission to argon 

emission for various spectral peaks. The calculation is a convolution of the electron energy 

distribution of the plasma and the cross sections of the actinometers. 

⍴ ≡
𝐾𝑟

𝐴𝑟
=

∫𝑓(𝐸)𝐸 𝜎𝐾𝑟(𝐸) 𝑑𝐸

∫𝑓(𝐸)𝐸 𝜎𝐴𝑟(𝐸) 𝑑𝐸
     (1) 

in which: 

𝑓(𝐸) =  𝐸 𝑒
−𝐸

𝑇𝑒       (2) 

 One prominent peak respectively from the argon and krypton spectra were selected for this 

model. Information regarding cross sections and energy excitation thresholds obtained from M. 

Malyshev and V. Donnelly can be found in table I in the appendix (1997). A sample range of data of 

electron temperatures ranging from 3-5 eV is plotted in Figure 10. This range of electron 

temperatures was selected because it would be expected to be experimentally observed for hydrogen 

plasmas occurring under the conditions used in this experimental work.  

 

Figure 10. A plot ⍴ versus the electron temperature (Te) of the hydrogen plasma. 
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From this plot, we observe that ⍴decreases with respect to increasing electron temperature. As seen 

in figures 4-8, ⍴ is experimentally observed to increase with respect to power. Thus, it is concluded 

that the electron temperature is decreasing with respect to power. This is most likely due to an 

increased electron density in the plasma with greater power supplied to the discharge. 

 

4.3. Model Limitations 

 The model described above does not allow for accurate estimates of the electron 

temperature since it does not account for other types of emission from the plasma. We assume the 

primary channel of reactions resulting in emission are direct excitations.: 

e- + Ar → Ar* + e- → Ar + e- + λ     (3) 

e- + Kr → Kr* + e- → Kr + e- + λ     (4) 

 However, our model does not take into account any cascading effects, that is, emission from 

a state that is populated by decay from higher states rather than direct excitation. Nonetheless, the 

qualitative conclusion that the electron temperature is decreasing with increasing power is robust, 

since this result is due only to the fact that the krypton excitations have a lower excitation threshold 

than the argon excitations. 

From our simple quantitative model, we can conclude that the electron temperature 

decreases with respect to increasing nominal power. This is most likely due to the fact that as power 

to the discharge is increased, the plasma density of the plasma also increases. Higher plasma density 

then leads to an increased number of electron-ion collisions which should result in a decrease in 

electron energy on average.  
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The electron temperature of the hydrogen plasma could in principle be estimated from this 

data. Such an analysis, however, requires a complicated mathematical model that would account for 

cascading effects. This is an objective in future work of the fundamental study of hydrogen plasmas. 

The author would like to thank James Doyle for his guidance in this work and Ken Moffett 

for technical assistance. Support for this work was provided by the Beltmann Fund.  
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6. APPENDIX 

 

Gas 

Wavelength 

(nm) 

Exp. Wavelength 

(nm) 

Energy Threshold 

(eV) 

Argon 750.4 751.6 13.5 

 751.5 752.4 13.3 

 763.5 764.8 13.2 

 794.8 796 * 

 811.5 812.5 13.1 

    

Krypton 758.7 760 11.7 

 760.2 761.2 11.5 

 768.5 769.5 12.2 

 769.5 769.9 11.5 

 810.4 811.3 11.4 

 811.3 812.5 11.4 

 826.3 827.3 12.2 

 829.8 830.8 11.5 

 877.7 878.8 11.4 

 

 

Table I. Argon and krypton spectral line wavelengths as recorded in Malyshev and Donnelly’s 

article on actinometry (1997) and observed experimentally, tabulated with the corresponding 

threshold for excitation. 
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