482 research outputs found

    Application of Time-Lapse ERT Imaging to Watershed Characterization

    Get PDF
    Time-lapse electrical resistivity tomography (ERT) has many practical applications to the study of subsurface properties and processes. When inverting time-lapse ERT data, it is useful to proceed beyond straightforward inversion of data differences and take advantage of the time-lapse nature of the data. We assess various approaches for inverting and interpreting time-lapse ERT data and determine that two approaches work well. The first approach is model subtraction after separate inversion of the data from two time periods, and the second approach is to use the inverted model from a base data set as the reference model or prior information for subsequent time periods. We prefer this second approach. Data inversion methodology should be consideredwhen designing data acquisition; i.e., to utilize the second approach, it is important to collect one or more data sets for which the bulk of the subsurface is in a background or relatively unperturbed state. A third and commonly used approach to time-lapse inversion, inverting the difference between two data sets, localizes the regions of the model in which change has occurred; however, varying noise levels between the two data sets can be problematic. To further assess the various time-lapse inversion approaches, we acquired field data from a catchment within the Dry Creek Experimental Watershed near Boise, Idaho, U.S.A. We combined the complimentary information from individual static ERT inversions, time-lapse ERT images, and available hydrologic data in a robust interpretation scheme to aid in quantifying seasonal variations in subsurface moisture content

    Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug

    Get PDF
    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17 ± 0.07 mm vs. 0.28 ± 0.11 mm) and area percent stenosis (22 ± 9% vs. 35 ± 12%) were significantly reduced (p < 0.05) by the AC-SES compared to the BMS 30 days after stent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity.Micell Technologies, Inc.National Institutes of Health (U.S.) (R01 GM49039

    Not a melting pot: Plant species aggregate in their non-native range

    Get PDF
    Aim Plant species continue to be moved outside of their native range by human activities. Here, we aim to determine whether, once introduced, plants assimilate into native communities or whether they aggregate, thus forming mosaics of native- and alien-rich communities. Alien species might aggregate in their non-native range owing to shared habitat preferences, such as their tendency to establish in high-biomass, species-poor areas. Location Twenty-two herbaceous grasslands in 14 countries, mainly in the temperate zone. Time period 2012-2016. Major taxa studied Plants. Methods We used a globally coordinated survey. Within this survey, we found 46 plant species, predominantly from Eurasia, for which we had co-occurrence data in their native and non-native ranges. We tested for differences in co-occurrence patterns of 46 species between their native (home) and non-native (away) range. We also tested whether species had similar habitat preferences, by testing for differences in total biomass and species richness of the patches that species occupy in their native and non-native ranges. Results We found the same species to show different patterns of association depending on whether they were in their native or non-native range. Alien species were negatively associated with native species; instead, they aggregated with other alien species in species-poor, high-biomass communities in their non-native range compared with their native range. Main conclusions The strong differences between the native (home) and non-native (away) range in species co-occurrence patterns are evidence that the way in which species associate with resident communities in their non-native range is not species dependent, but is instead a property of being away from their native range. These results thus highlight that species might undergo important ecological changes when introduced away from their native range. Overall, we show origin-dependent associations that result in novel communities, in which alien-rich patches exist within a mosaic of native-dominated communities

    Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition

    Get PDF
    The interaction between natural killer (NK) cell inhibitory receptors and their cognate ligands constitutes a key mechanism by which healthy tissues are protected from NK cell-mediated lysis. However, self-ligand recognition remains poorly understood within the prototypical NKR-P1 receptor family. Here we report the structure of the inhibitory NKR-P1B receptor bound to its cognate host ligand, Clr-b. NKR-P1B and Clr-b interact via a head-to-head docking mode through an interface that includes a large array of polar interactions. NKR-P1B:Clr-b recognition is extremely sensitive to mutations at the heterodimeric interface, with most mutations severely impacting both Clr-b binding and NKR-P1B receptor function to implicate a low affinity interaction. Within the structure, two NKR-P1B:Clr-b complexes are cross-linked by a non-classic NKR-P1B homodimer, and the disruption of homodimer formation abrogates Clr-b recognition. These data provide an insight into a fundamental missing-self recognition system and suggest an avidity-based mechanism underpins NKR-P1B receptor function
    corecore