52 research outputs found

    Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1

    Get PDF
    Prion diseases are associated with the conformational conversion of the host-encoded cellular prion protein into an abnormal pathogenic isoform. Reduction in prion protein levels has potential as a therapeutic approach in treating these diseases. Key targets for this goal are factors that affect the regulation of the prion protein gene. Recent in vivo and in vitro studies have suggested a role for prion protein in copper homeostasis. Copper can also induce prion gene expression in rat neurons. However, the mechanism involved in this regulation remains to be determined. We hypothesized that transcription factors SP1 and metal transcription factor-1 (MTF-1) may be involved in copper-mediated regulation of human prion gene. To test the hypothesis, we utilized human fibroblasts that are deleted or overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. Menkes deletion fibroblasts have high intracellular copper, whereas Menkes overexpressed fibroblasts have severely depleted intracellular copper. We have utilized this system previously to demonstrate copper-dependent regulation of the Alzheimer amyloid precursor protein. Here we demonstrate that copper depletion in MNK overexpressed fibro-blasts decreases cellular prion protein and PRNP gene levels. Conversely, expression of transcription factors SP1 and/or MTF-1 significantly increases prion protein levels and up-regulates prion gene expression in copper-replete MNK deletion cells. Furthermore, siRNA "knockdown" of SP1 or MTF-1 in MNK deletion cells decreases prion protein levels and down-regulates prion gene expression. These data support a novel mechanism whereby SP1 and MTF-1 act as copper-sensing transcriptional activators to regulate human prion gene expression and further support a role for the prion protein to function in copper homeostasis. Expression of the prion protein is a vital component for the propagation ofprion diseases; thus SP1 and MTF-1 represent new targets in the devel-opment of key therapeutics toward modulating the expression of the cellular prion protein and ultimately the prevention of prion disease

    Syntaxin 5 Is Required for Copper Homeostasis in Drosophila and Mammals

    Get PDF
    Copper is essential for aerobic life, but many aspects of its cellular uptake and distribution remain to be fully elucidated. A genome-wide screen for copper homeostasis genes in Drosophila melanogaster identified the SNARE gene Syntaxin 5 (Syx5) as playing an important role in copper regulation; flies heterozygous for a null mutation in Syx5 display increased tolerance to high dietary copper. The phenotype is shown here to be due to a decrease in copper accumulation, a mechanism also observed in both Drosophila and human cell lines. Studies in adult Drosophila tissue suggest that very low levels of Syx5 result in neuronal defects and lethality, and increased levels also generate neuronal defects. In contrast, mild suppression generates a phenotype typical of copper-deficiency in viable, fertile flies and is exacerbated by co-suppression of the copper uptake gene Ctr1A. Reduced copper uptake appears to be due to reduced levels at the plasma membrane of the copper uptake transporter, Ctr1. Thus Syx5 plays an essential role in copper homeostasis and is a candidate gene for copper-related disease in humans

    Control of Alzheimer's Amyloid Beta Toxicity by the High Molecular Weight Immunophilin FKBP52 and Copper Homeostasis in Drosophila

    Get PDF
    FK506 binding proteins (FKBPs), also called immunophilins, are prolyl-isomerases (PPIases) that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP). Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Aβ toxicity. Towards this goal, we generated Aβ transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Aβ and increased lifespan in Aβ flies, whereas loss of function of FKBP52 exacerbated these Aβ phenotypes. Interestingly, the Aβ pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (−/−) cells have increased intracellular copper and higher levels of Aβ. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Aβ peptides

    Copper transporting P-Type ATPases in the brain

    Full text link

    Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool.

    No full text
    MNK (Menkes copper-translocating P-type ATPase, or the Menkes protein; ATP7A) plays a key role in regulating copper homoeostasis in humans. MNK has been shown to have a dual role in the cell: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper from the cell. These roles can be achieved through copper-regulated trafficking of MNK. It has previously been shown to undergo trafficking from the trans -Golgi network to the plasma membrane in response to elevated copper concentrations, and to be endocytosed from the plasma membrane to the trans -Golgi network upon the removal of elevated copper. However, the fundamental question as to whether copper influences trafficking of MNK to or from the plasma membrane remained unanswered. In this study we utilized various methods of cell-surface biotinylation to attempt to resolve this issue. These studies suggest that copper induces trafficking of MNK to the plasma membrane but does not affect its rate of internalization from the plasma membrane. We also found that only a specific pool of MNK can traffic to the plasma membrane in response to elevated copper. Significantly, copper appeared to divert MNK into a fast-recycling pool and prevented it from recycling to the Golgi compartment, thus maintaining a high level of MNK in the proximity of the plasma membrane. These findings shed new light on the cell biology of MNK and the mechanism of copper homoeostasis in general
    • …
    corecore