2,143 research outputs found

    Scaling in cognitive performance reflects multiplicative multifractal cascade dynamics

    Get PDF
    Self-organized criticality purports to build multi-scaled structures out of local interactions. Evidence of scaling in various domains of biology may be more generally understood to reflect multiplicative interactions weaving together many disparate scales. The self-similarity of power-law scaling entails homogeneity: fluctuations distribute themselves similarly across many spatial and temporal scales. However, this apparent homogeneity can be misleading, especially as it spans more scales. Reducing biological processes to one power-law relationship neglects rich cascade dynamics. We review recent research into multifractality in executive-function cognitive tasks and propose that scaling reflects not criticality but instead interactions across multiple scales and among fluctuations of multiple sizes

    Torts

    Get PDF
    Covers cases on limitation of actions in malpractice suits, on the extent of liability for ultrahazardous activities (Furber), and on defenses available to the tortfeasor in wrongful death actions (Dixon)

    A new species of coral snake (Serpentes, Elapidae) from the Sierra de Tamaulipas, Mexico

    Get PDF
    We describe a new species of Micrurus from the Mexican state of Tamauliupas. All of our specimens were encountered in pine-oak forest above an elevation of 750 meters. The new species is related to Micrurus tener, but differs in the absence of a yellow parietal ring and the presence of a tricolored tail

    Tracking Cyber Adversaries with Adaptive Indicators of Compromise

    Full text link
    A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expressions (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities. In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naive solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naive solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.Comment: This was presented at the 4th Annual Conf. on Computational Science & Computational Intelligence (CSCI'17) held Dec 14-16, 2017 in Las Vegas, Nevada, US

    Quantum Mutual Information Capacity for High Dimensional Entangled States

    Get PDF
    High dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric downconversion state, achieving a channel capacity over 7 bits/photon in either the position or momentum basis, by measuring in up to 576 dimensions per detector. The channel violated an entropic separability bound, suggesting the performance cannot be replicated classically.Comment: 5 pages, 2 figure

    On the Significance of Absorption Features in HST/COS Data

    Full text link
    We present empirical scaling relations for the significance of absorption features detected in medium resolution, far-UV spectra obtained with the Cosmic Origins Spectrograph (COS). These relations properly account for both the extended wings of the COS line spread function and the non-Poissonian noise properties of the data, which we characterize for the first time, and predict limiting equivalent widths that deviate from the empirical behavior by \leq 5% when the wavelength and Doppler parameter are in the ranges \lambda = 1150-1750 A and b > 10 km/s. We have tested a number of coaddition algorithms and find the noise properties of individual exposures to be closer to the Poissonian ideal than coadded data in all cases. For unresolved absorption lines, limiting equivalent widths for coadded data are 6% larger than limiting equivalent widths derived from individual exposures with the same signal-to-noise. This ratio scales with b-value for resolved absorption lines, with coadded data having a limiting equivalent width that is 25% larger than individual exposures when b \approx 150 km/s.Comment: 25 pages, 3 tables, 7 figures, accepted for publication in PAS

    Quantum Mutual Information Capacity for High-Dimensional Entangled States

    Get PDF
    High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7  bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically
    corecore