6,998 research outputs found

    Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. <it>Staphylococcus aureus </it>is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen.</p> <p>Results</p> <p>The impact of <it>S. aureus </it>soluble products in biofilm-conditioned medium (BCM) or in planktonic-conditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic <it>S. aureus </it>was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, <it>S. aureus </it>biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms.</p> <p>Conclusions</p> <p>Collectively the results indicate that <it>S. aureus </it>biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.</p

    The X-Ray Concentration-Virial Mass Relation

    Full text link
    We present the concentration (c)-virial mass (M) relation of 39 galaxy systems ranging in mass from individual early-type galaxies up to the most massive galaxy clusters, (0.06-20) x 10^{14} M_sun. We selected for analysis the most relaxed systems possessing the highest quality data currently available in the Chandra and XMM public data archives. A power-law model fitted to the X-ray c-M relation requires at high significance (6.6 sigma) that c decreases with increasing M, which is a general feature of CDM models. The median and scatter of the c-M relation produced by the flat, concordance LCDM model (Omega_m=0.3, sigma_8=0.9) agrees with the X-ray data provided the sample is comprised of the most relaxed, early forming systems, which is consistent with our selection criteria. Holding the rest of the cosmological parameters fixed to those in the concordance model the c-M relation requires 0.76< sigma_8 <1.07 (99% conf.), assuming a 10% upward bias in the concentrations for early forming systems. The tilted, low-sigma_8 model suggested by a new WMAP analysis is rejected at 99.99% confidence, but a model with the same tilt and normalization can be reconciled with the X-ray data by increasing the dark energy equation of state parameter to w ~ -0.8. When imposing the additional constraint of the tight relation between sigma_8 and Omega_m from studies of cluster abundances, the X-ray c-M relation excludes (>99% conf.) both open CDM models and flat CDM models with Omega_m ~1. This result provides novel evidence for a flat, low-Omega_m universe with dark energy using observations only in the local (z << 1) universe. Possible systematic errors in the X-ray mass measurements of a magnitude ~10% suggested by CDM simulations do not change our conclusions.Comment: Accepted for Publication in ApJ; 13 pages, 4 figures; minor clarifications and updates; correlation coefficients corrected in Table 1 (correct values were used in the analysis in previous versions); conclusions unchange

    Ground Water in the Kentucky River Basin

    Get PDF
    Most private wells in the Kentucky River Basin are in unconfined or semi-confined bedrock aquifers. Within these aquifers, high-yield zones are irregularly distributed. The most productive wells are drilled into fractured bedrock and alluvium along the Kentucky River floodplain. The data indicate that ground water acts as a buffer to peak and low flows in Kentucky River Basin streams. At current withdrawal rates, ground-water usage does not seem to have an adverse impact on the Kentucky River. Privately owned ground-water sources supply approximately 135,000 people living in the basin-approximately 19 percent of the total population and 36 percent of the rural population. More than 50 percent of residential water supplies in eastern Kentucky rely on ground water. If aquifers are protected from pollution by wellhead protection programs and old wells are retrofitted to prevent direct contamination, then ground water will continue to provide a reliable water supply in many rural areas of the basin. However, for most of the basin, few wells will have yields adequate to supply a large demand. Ground water from present wells will not provide an adequate supply for communities with a population of over a few thousand. Limited discharge data available for springs and large wells in the basin strongly suggest that the potential for ground water to supplement current supplies should not be ignored. Discharge from well fields and springs could be used to augment surface supplies during drought. A better understanding of the distribution and quality of ground-water resources is crucial for the citizens of the basin to fully benefit from ground water

    Structural Changes in U.S. Agricultural Production and Productivity

    Get PDF
    The structure of U.S. agricultural production changed dramatically during the 20th Century. Major technological innovations transformed the relationship between agricultural inputs and outputs, and contributed to rapid increases in agricultural productivity. However, evidence is mounting that suggests we have entered a new era, with substantially lower rates of productivity growth. In this article, we examine trends and spatial patterns in agricultural input use, production of outputs, and productivity. We focus on productivity growth over the period 1949–2002, and find a statistically significant slowdown in productivity growth after 1990

    The NGC 7129 Young Stellar Cluster: A Combined Spitzer, MMT, and 2MASS Census of Disks, Protostars, and Outflows

    Full text link
    We present the analysis of seven band (1.2 to 8 micron) ground and space-based imaging of the NGC 7129 young stellar cluster from FLAMINGOS on MMT, 2MASS, and the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. An analysis of the H-[4.5] vs. J-H colors reveals 84 objects with circumstellar disks. Of these, 42 are located within the cluster core, a 0.5 pc (100'') radius region of enhanced stellar surface density. From a luminosity and extinction limited sample of the stars within the cluster core boundary we have determined that 54% +/- 14% have circumstellar disks. Finally, we report the detection of several resolved outflows in the IRAC 4.5 micron mosaic.Comment: 13 pages, 4 figures. Accepted to the Spitzer special issue of ApJS. The full-resolution preprint can be obtained from http://astro.pas.rochester.edu/~rguter/preprints/gutermuth_ngc7129_a.tar.g

    The Absence of Adiabatic Contraction of the Radial Dark Matter Profile in the Galaxy Cluster A2589

    Full text link
    We present an X-ray analysis of the radial mass profile of the radio-quiet galaxy cluster A2589 between 0.015-0.25 r_vir using an XMM-Newton observation. Except for a ~16 kpc shift of the X-ray center of the R=45-60 kpc annulus, A2589 possesses a remarkably symmetrical X-ray image and is therefore an exceptional candidate for precision studies of its mass profile by applying hydrostatic equilibrium. The total gravitating matter profile is well described by the NFW model (fractional residuals <~10%) with c_vir=6.1 +/- 0.3 and M_vir = 3.3 +/- 0.3 x 10^{14} M_sun (r_vir = 1.74 +/- 0.05 Mpc) in excellent agreement with LCDM. When the mass of the hot ICM is subtracted from the gravitating matter profile, the NFW model fitted to the resulting dark matter (DM) profile produces essentially the same result. However, if a component accounting for the stellar mass (M_*) of the cD galaxy is included, then the NFW fit to the DM profile is substantially degraded in the central r ~50 kpc for reasonable M_*/L_V. Modifying the NFW DM halo by adiabatic contraction arising from the early condensation of stellar baryons in the cD galaxy further degrades the fit. The fit is improved substantially with a Sersic-like model recently suggested by high resolution N-body simulations but with an inverse Sersic index, alpha ~0.5, a factor of ~3 higher than predicted. We argue that neither random turbulent motions nor magnetic fields can provide sufficient non-thermal pressure support to reconcile the XMM mass profile with adiabatic contraction of a CDM halo assuming reasonable M_*/L_V. Our results support the scenario where, at least for galaxy clusters, processes during halo formation counteract adiabatic contraction so that the total gravitating mass in the core approximately follows the NFW profile.Comment: 15 pages, 11 figures, accepted for publication in ApJ. Minor changes to match published versio

    Probing the Dark Matter and Gas Fraction in Relaxed Galaxy Groups with X-ray observations from Chandra and XMM

    Full text link
    We present radial mass profiles within 0.3 r_vir for 16 relaxed galaxy groups-poor clusters (kT range 1-3 keV) selected for optimal mass constraints from the Chandra and XMM data archives. After accounting for the mass of hot gas, the resulting mass profiles are described well by a two-component model consisting of dark matter (DM), represented by an NFW model, and stars from the central galaxy. The stellar component is required only for 8 systems, for which reasonable stellar mass-to-light ratios (M/L_K) are obtained, assuming a Kroupa IMF. Modifying the NFW dark matter halo by adiabatic contraction does not improve the fit and yields systematically lower M/L_K. In contrast to previous results for massive clusters, we find that the NFW concentration parameter (c_vir) for groups decreases with increasing M_vir and is inconsistent with no variation at the 3 sigma level. The normalization and slope of the c_vir-M_vir relation are consistent with the standard LambdaCDM cosmological model with sigma_8 = 0.9. The small intrinsic scatter measured about the c_vir-M_vir relation implies the groups represent preferentially relaxed, early forming systems. The mean gas fraction (f =0.05 +/- 0.01) of the groups measured within an overdensity Delta=2500 is lower than for hot, massive clusters, but the fractional scatter (sigma_f/f=0.2) for groups is larger, implying a greater impact of feedback processes on groups, as expected.Comment: Accepted for Publication in ApJ; 30 pages, 9 figures. No changes from previous versio
    • …
    corecore