1,197 research outputs found

    An Objectives-Driven Process for Selecting Methods to Support Requirements Engineering Activities

    Full text link
    This paper presents a framework that guides the requirements engineer in the implementation and execution of an effective requirements generation process. We achieve this goal by providing a well-defined requirements engineering model and a criteria based process for optimizing method selection for attendant activities. Our model, unlike other models, addresses the complete requirements generation process and consists of activities defined at more adequate levels of abstraction. Additionally, activity objectives are identified and explicitly stated - not implied as in the current models. Activity objectives are crucial as they drive the selection of methods for each activity. Our model also incorporates a unique approach to verification and validation that enhances quality and reduces the cost of generating requirements. To assist in the selection of methods, we have mapped commonly used methods to activities based on their objectives. In addition, we have identified method selection criteria and prescribed a reduced set of methods that optimize these criteria for each activity defined by our requirements generation process. Thus, the defined approach assists in the task of selecting methods by using selection criteria to reduce a large collection of potential methods to a smaller, manageable set. The model and the set of methods, taken together, provide the much needed guidance for the effective implementation and execution of the requirements generation process.Comment: 20 pages, 5 figures, 3 tables, publisheed: 29th Annual IEEE/NASA Software Engineering Workshop, April 200

    Evidence for partial quenching of orbital angular momentum upon complex formation in the infrared spectrum of OH-acetylene

    Get PDF
    The entrance channel leading to the addition reaction between the hydroxyl radical and acetylene has been examined by spectroscopic characterization of the asymmetric CH stretching band of the π-hydrogen bonded OH-acetylene reactant complex. The infrared action spectrum observed at 3278.6 cm−1 (origin) consists of seven peaks of various intensities and widths, and is very different from those previously reported for closed-shell HF/HCl-acetylene complexes. The unusual spectrum arises from a partial quenching of the OH orbital angular momentum in the complex, which in turn is caused by a significant splitting of the OH monomer orbital degeneracy into 2A′ and 2A″ electronic states. The magnitude of the 2A′−2A″ splitting as well as the A rotational constant for the OH-acetylene complex are determined from the analysis of this b-type infrared band. The most populated OH product rotational state, jOH = 9/2, is consistent with intramolecular vibrational energy transfer to the ν2 C≡C stretching mode of the departing acetylene fragment. The lifting of the OH orbital degeneracy and partial quenching of its electronic orbital angular momentum indicate that the electronic changes accompanying the evolution of reactants into products have begun to occur in the reactant complex

    Infrared spectrum and stability of a π-type hydrogen-bonded complex between the OH and C2H2 reactants

    Get PDF
    A hydrogen-bonded complex between the hydroxyl radical and acetylene has been stabilized in the reactant channel well leading to the addition reaction and characterized by infrared action spectroscopy in the OH overtone region. Analysis of the rotational band structure associated with the a-type transition observed at 6885.53(1) cm−1 (origin) reveals a T-shaped structure with a 3.327(5) Å separation between the centers of mass of the monomer constituents. The OH (v = 1) product states populated following vibrational predissociation show that dissociation proceeds by two mechanisms: intramolecular vibrational to rotational energy transfer and intermolecular vibrational energy transfer. The highest observed OH product state establishes an upper limit of 956 cm−1 for the stability of the π-type hydrogen-bonded complex. The experimental results are in good accord with the intermolecular distance and well depth at the T-shaped minimum energy configuration obtained from complementary ab initio calculations, which were carried out at the restricted coupled cluster singles, doubles, noniterative triples level of theory with extrapolation to the complete basis set limit

    Supply instability and oil market behavior

    Get PDF
    This paper analyzes the disruption in world oil markets which was triggered by the 1978-79 Iranian revolution. The resultant price rises are explored in the context of the behavior of the spot market and key OPEC countries. In particular, the economic and political roles of excess oil supply in the Persian Gulf nations are discussed. Conclusions for the likely future are presented, along with the implications for United States policy.NSF grant no. DAR 78-19044

    MELVILLE'S 'THE PIAZZA TALES': THE QUEST FOR COMMUNICATIONS.

    Get PDF

    Theme of Antony and Cleopatra

    Get PDF
    Englis

    Search for plant biomagnetism with a sensitive atomic magnetometer

    Get PDF
    We report what we believe is the first experimental limit placed on plant biomagnetism. Measurements with a sensitive atomic magnetometer were performed on the Titan arum (Amorphophallus titanum) inflorescence, known for its fast bio-chemical processes while blooming. We find that the surface magnetic field from these processes, projected along the Earth's magnetic field, and measured at the surface of the plant, is less then ~0.6uG.Comment: 5 pages, 5 figures, to be published - modified one sentence in abstract + reformatted fi

    WTEC panel report on European nuclear instrumentation and controls

    Get PDF
    Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology
    • …
    corecore