15 research outputs found

    Hyperglycemia decreased medial amygdala projections to medial Preoptic area in experimental model of diabetes mellitus

    Get PDF
    In Wistar rats, reproductive behavior is controlled in a neural circuit of ventral forebrain including the medial amygdala (Me), bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA) via perception of social odors. Diabetes Mellitus (DM) is a widespread metabolic disease that affects many organs in a variety of levels. DM can cause central neuropathies such as neuronal apoptosis, dendritic atrophy, neurochemical alterations and also causes reproductive dysfunctions. So we hypothesized damage to the nuclei of this circuit can cause reproductive dysfunctions. Therefore in this project we assessed diabetic effect on these nuclei. For this purpose neuron tracing technique and TUNEL assay were used. We injected HRP in the MPOA and counted labeled cells in the Me and BNST to evaluate the reduction of neurons in diabetic animals. Also, coronal sections were analyzed with the TMB histochemistry method. Animals in this study were adult male Wistar rats (230 ± 8g) divided to control and 10-week streptozotocin-induced diabetic groups. After data analysis by SPSS 16 software, a significant reduction of HRP-labeled neurons was shown in both Me and BNST nuclei in the diabetic group. Moreover, apoptotic cells were significantly observed in diabetic animals in contrast to control the group. In conclusion, these alterations of the circuit as a result of diabetes might be one of the reasons for reproductive dysfunctions. © 2015 Tehran University of Medical Sciences. All rights reserved

    More attention on glial cells to have better recovery after spinal cord injury

    Get PDF
    Functional improvement after spinal cord injury remains an unsolved difficulty. Glial scars, a major component of SCI lesions, are very effective in improving the rate of this recovery. Such scars are a result of complex interaction mechanisms involving three major cells, namely, astrocytes, oligodendrocytes, and microglia. In recent years, scientists have identified two subtypes of reactive astrocytes, namely, A1 astrocytes that induce the rapid death of neurons and oligodendrocytes, and A2 astrocytes that promote neuronal survival. Moreover, recent studies have suggested that the macrophage polarization state is more of a continuum between M1 and M2 macrophages. M1 macrophages that encourage the inflammation process kill their surrounding cells and inhibit cellular proliferation. In contrast, M2 macrophages promote cell proliferation, tissue growth, and regeneration. Furthermore, the ability of oligodendrocyte precursor cells to differentiate into adult oligodendrocytes or even neurons has been reviewed. Here, we first scrutinize recent findings on glial cell subtypes and their beneficial or detrimental effects after spinal cord injury. Second, we discuss how we may be able to help the functional recovery process after injury. © 2021 The Author

    Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro

    Get PDF
    Background: Nowadays, the number of cancer survivors is significantly increasing as a result of efficient chemo/radio therapeutic treatments. Female cancer survivors may suffer from decreased fertility. In this regard, different fertility preservation techniques were developed. Artificial ovary is one of these methods suggested by several scientific groups. Decellularized ovarian cortex has been introduced as a scaffold in the field of human fertility preservation. This study was carried out to compare decellularization of the ovarian scaffold by various protocols and evaluate the follicle survival in extracellular matrix (ECM)-alginate scaffold. Results: The micrographs of H&E and DAPI staining confirmed successful decellularization of the ovarian cortex in all experimental groups, but residual DNA content in SDS-Triton group was significantly higher than other groups (P < 0.05). SEM images demonstrated that complex fiber network and porosity structure were maintained in all groups. Furthermore, elastin and collagen fibers were observed in all groups after decellularization process. MTT test revealed higher cytobiocompatibility of the SDS-Triton-Ammonium and SDS-Triton decellularized scaffolds compared with SDS groups. Compared to the transferred follicles into the sodium alginate (81), 85.9 of the transferred follicles into the decellularized scaffold were viable after 7 days of cultivation (P = 0.04). Conclusion: Although all the decellularization procedures was effective in removal of cells from ovarian cortex, SDS-Triton-Ammonium group showed less residual DNA content with higher cytobiocompatibility for follicles when compared with other groups. In addition, the scaffold made from ovarian tissues decellularized using SDS-Triton-Ammonium and sodium alginate is suggested as a potential 3D substrate for in vitro culture of follicles for fertility preservation. © 2021, The Author(s)

    6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels

    No full text
    Objectives: Parkinson�s disease (PD) is a neurological condition with selective progressive degeneration of dopaminergic neurons. Routine therapies are symptomatic and palliative. Although, hesperidin (Hsd) is known for its neuroprotective effects, its exact cellular mechanism is still a mystery. Considering the important role of calcium (Ca2+) in cellular mechanisms of neurodegenerative diseases, the present study aimed to investigate the possible effects of Hsd on Ca2+ channels in cellular model of PD and the possible association between the selective vulnerability of neurons in cellular models of PD and expression of the physiological phenotype that changes Ca2+ homeostasis. Methods: SH-SY5Y cell line was used in this study; cell damage was induced by 150 µM 6-OHDA and the cells� viability was examined using MTT assay. Intracellular calcium, reactive oxygen species (ROS) and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. The expressions of calcium channel receptors were determined by gel electrophoresis and immunoblotting. Results: Loss of cell viability and mitochondrial membrane potential were confirmed in 6-OHDA treated cells. In addition, intracellular ROS and calcium levels, calcium channel receptors significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with hesperidin showed a protective effect, reduced the biochemical markers of cell damage/death, and balanced calcium hemostasis. Conclusions: Based on our findings, it seems that hesperidin could suppress the progression of the cellular model of PD via acting on intracellular calcium homeostasis. Further studies are needed to confirm the potential benefits of preventive and therapeutic effects of stabilizing cellular calcium homeostasis in neurodegenerative disease. © 2021 De Gruyter. All rights reserved

    The Cuscuta kotschyana effects on breast cancer cells line MCF7

    No full text
    Cuscuta kotschyana Boiss is classified as a member of Convolvulaceae family. This plant is mainly a central Asian taxon. Cuscuta is a parasitic plant that wraps around other plants for nourishment. Previous studies have indicated that Cuscuta could be possesses anticancer and immunostimulatory activities. The chemical constituents of Cuscuta mainly comprise flavonols like quercetin, kaempferol and other glycosids. These compounds maybe responsible for the biological activities of this plant. In the present study, the effects of flavonoid extracts of Cuscuta seed stem and its host plant (vine) was investigated on the growth of breast cancer cell line (MCF-7). The HPLC assay revealed that quercetin is the major compound in the extracts. The MTT assay revealed that after treatment with stem and seed extracts, reduced cell viability in MCF-7 cell line in a dose and time dependent manner. The anti proliferative effect of stem extract was significant from 50 μg/ml, and the inhibitory effect of seed extract was significant at 100 μg/ml, after 48 and 72 h. Annexin assay and flow cytometry analysis also showed these extracts (100 μg/ml seed) and (50 μg/ml stem) induced apoptosis 51 and 34, respectively in MCF-7 cells after 72 h. These finding suggest that the flavonoid extract of Cuscuta could be useful in breast cancer treatment. © 2011 Academic Journals

    Computational Modeling of Neuronal Current MRI Signals with Rat Somatosensory Cortical Neurons

    No full text
    Magnetic field generated by active neurons has recently been considered to determine location of neuronal activity directly with magnetic resonance imaging (MRI), but controversial results have been reported about detection of such small magnetic fields. In this study, multiple neuronal morphologies of rat tissue were modeled to investigate better estimation of MRI signal change produced by neuronal magnetic field (NMF). Ten pyramidal neurons from layer II to VI of rat somatosensory area with realistic morphology, biophysics, and neuronal density were modeled to simulate NMF of neuronal tissue, from which effects of NMF on MRI signals were obtained. Neuronal current MRI signals, which consist of relative magnitude signal change (RMSC) and phase signal change (PSC), were at least three and one orders of magnitude less than a tissue with single neuron type, respectively. Also, a reduction in voxel size could increase signal alterations. Furthermore, with selection of zenith angle of external main magnetic field related to tissue surface near to 90°, RMSC could be maximized. This value for PSC would be 90° for small voxel size and zero degree for large ones. © 2015, International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg

    Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model

    No full text
    Neuropathic pain (NP) is caused by damage to the nervous system due to reactive oxygen spices (ROS) increase, antioxidants reduction, ATP production imbalance, and induction of apoptosis. In this investigation, we applied low-level laser 660 nm (photobiomodulation therapy) as a new strategy to modulate pain. In order to study the effects of photobiomodulation therapy (660 nm) on NP, chronic constriction injury (CCI) model was selected. Low-level laser of 660 nm was used for 2 weeks. Thermal and mechanical hyperalgesia were measured before and after surgery on days 7 and 14, respectively. Paw withdrawal thresholds were also evaluated. Expression of p2x3, Bax, and bcl2 protein was measured by western blotting. The amount of glutathione (GSH) was measured in the spinal cord by continuous spectrophotometric rate determination method. The results are presented as mean ± SD. Statistical analysis of data was carried out using SPSS 21. CCI decreased the pain threshold, 2-week photobiomodulation therapy significantly increased mechanical and thermal threshold, decreased P2X3 expression (p < 0.001), and increased bcl2 expression (p < 0.01), but it was not effective on the Bax expression. We speculated that although photobiomodulation therapy increased ROS generation, it increased antioxidants such as GSH. Increase in bcl2 is another mitochondrial protection mechanism for cell survival and that pain relief and decrease in P2X3 expression confirm it. © 2016, Springer-Verlag London

    Estimation of phase signal change in neuronal current MRI for evoke response of tactile detection with realistic somatosensory laminar network model

    No full text
    Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot�savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80�ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1�mrad for echo time�=�175�ms and voxel size�=�1.48�� 1.48�� 2.18�mm3. With echo time less than 25�ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation. � 2016, Australasian College of Physical Scientists and Engineers in Medicine

    Apelin�13 protects against memory impairment and neuronal loss, Induced by Scopolamine in male rats

    No full text
    The present study aimed to evaluate the effects of Apelin�13 on scopolamine�induced memory impairment in rats. Forty male rats were divided into five groups of eight. The control group received no intervention; the scopolamine group underwent stereotaxic surgery and received 3 mg/kg intraperitoneal scopolamine. The treatment groups additionally received 1.25, 2.5 and 5 µg apelin�13 in right lateral ventricles for 7 days. All rats (except the control group) were tested for the passive avoidance reaction, 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with cresyl violet; synaptogenesis biochemical markers were determined by immunoblotting. Apelin�13 alleviated scopolamine�induced passive avoidance memory impairment and neuronal loss in the rats� hippocampus (P<0.001). The reduction observed in mean concentrations of hippocampal synaptic proteins (including neurexin1, neuroligin, and postsynaptic density protein 95) in scopolamine�treated animals was attenuated by apelin�13 treatment. The results demonstrated that apelin�13 can protect against passive avoidance memory deficiency, and neuronal loss, induced by scopolamine in male rats. Further experimental and clinical studies are required to confirm its therapeutic potential in neurodegenerative diseases. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

    Coenzyme Q10 Influences on the Levels of TNF-α and IL-10 and the Ratio of Bax/Bcl2 in a Menopausal Rat Model Following Lumbar Spinal Cord Injury

    No full text
    The roles of the immune response and apoptosis as potential mediators of secondary damage in spinal cord injury (SCI) are being investigated. Research is also being done to determine the effects of female gonadal steroids, which decrease during menopause, and antioxidants, such as coenzyme Q10 (CoQ10) on SCI. We hypothesized that in the absence of female gonadal steroids, which provide protection following an SCI, CoQ10 could modulate the expression of cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-10, besides aquaporin-4 (AQP4) water channels in the CNS, which participate in neuroinflammation, as well as the Bax and Bcl2 proteins that are involved in apoptosis at the site of injury. The spinal cord was compressed at the level of the T10 vertebrae and rats were treated by 10 mg/kg/day CoQ10 for 3 weeks after surgery. The TNF-α and IL-10 expressions were studied using an ELISA. Western blot was used to investigate the Bax/Bcl-2 ratio, AQP4. The level of TNF-α significantly decreased following the administration of CoQ10 compared with the level of IL-10. When the treatment group was compared with the OVX-SCI group, the ratio of Bax/Bcl2 significantly decreased in the groups (P < 0.01). Based on our findings, CoQ10 could be used to compensate for the absence of the neuroprotection effects provided by female gonadal steroids via reducing the inappropriate effects of the two main pathways of secondary damage in SCI apoptosis. © 2018, Springer Science+Business Media, LLC, part of Springer Nature
    corecore