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A B S T R A C T   

Functional improvement after spinal cord injury remains an unsolved difficulty. Glial scars, a major component 
of SCI lesions, are very effective in improving the rate of this recovery. Such scars are a result of complex 
interaction mechanisms involving three major cells, namely, astrocytes, oligodendrocytes, and microglia. In 
recent years, scientists have identified two subtypes of reactive astrocytes, namely, A1 astrocytes that induce the 
rapid death of neurons and oligodendrocytes, and A2 astrocytes that promote neuronal survival. Moreover, 
recent studies have suggested that the macrophage polarization state is more of a continuum between M1 and M2 
macrophages. M1 macrophages that encourage the inflammation process kill their surrounding cells and inhibit 
cellular proliferation. In contrast, M2 macrophages promote cell proliferation, tissue growth, and regeneration. 
Furthermore, the ability of oligodendrocyte precursor cells to differentiate into adult oligodendrocytes or even 
neurons has been reviewed. Here, we first scrutinize recent findings on glial cell subtypes and their beneficial or 
detrimental effects after spinal cord injury. Second, we discuss how we may be able to help the functional re
covery process after injury.   

1. Introduction 

An injury to the central nervous system (CNS), particularly to the 
spinal cord, causes irreversible damage. After an injury, however, low 
degrees of functional improvement has been observed in some patients. 
The rate of this improvement, although minor, is clearly visible on the 
cortical map. Furthermore, these changes in plasticity are seen at 
different levels, including the brainstem, spinal cord, and CNS [2]. 
Pathological events after spinal cord injury (SCI) include primary and 
secondary damages. Primary post-SCI damages occur immediately after 
injury and include demyelination and necrosis, as well as neuronal and 
axonal loss [3]. Secondary post-SCI damages include persistent demy
elination and neuronal loss, edema and nerve ischemia, oxidative stress, 
inflammatory reactions, and glial scar formation [4–7]. The CNS con
sists of two types of cells: the neurons, which are responsible for 
communicating with other neurons and perceiving changes, and the 

glia, also called glial cells or neuroglia, which are responsible for 
nourishing, protecting, and supporting the nervous system, as well as 
removing waste products from the system. Glial cells are a group of cells 
that are highly involved in the damages incurred after SCI. Many studies 
have shown that these CNS cells play a key role both in the process of 
regeneration and functional improvement (beneficial) as well as in 
accelerating traumatic injuries (harmful). Three main groups of glial 
cells exist in the CNS which are affected by spinal injuries. The first 
group is the astrocytes that regulate neurotransmitter and neurovascular 
dynamics in the CNS. After SCI, these cells turn into reactive astrocytes 
that cause glial scar formation and eventually restrict plasticity. The 
second group are microglia, which are responsible for scanning degrees 
of infection and injury, and increase axonal formation and remyelina
tion in response to SCI, but also develop cytotoxic effects. Lastly, oli
godendrocytes and their precursor cells are responsible for supporting 
the axons as well as accelerating axonal signaling in the CNS. In response 
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to SCI, they differentiate and produce lost myelin, but they are suscep
tible to death [8]. 

Our aim in this review is to investigate the effects of these three cell 
types on post-SCI events and suggest viable ways to assist in the post-SCI 
recovery process. 

1.1. Astrocytes 

Astrocytes, the most abundant cells in the CNS, are present in both 
white matter and grey matter. These cells have a wide range of functions 
in the CNS and play a crucial role in neurophysiology. Astrocytes 
contribute to synaptogenesis, regulate neurotransmitters, play an 
essential role in the immune response, promote the expression of 
extracellular matrix molecules, improve cell migration, and ultimately 
enhance differentiation and maturation in the CNS [9]. 

1.2. Morphology of astrocytes after SCI 

Astrocytes are one of the most crucial cell subtypes in the nervous 
system which are involved in establishing and maintaining homeostasis 
during an injury. In various conditions of damage to neural tissue, 
changes occur in the function, appearance, and gene expression of nerve 
cells. The post-injury changes in astrocytes are called Astrocytopathy, 
which is divided into two main categories of functional and phenotype 
changes. These cells may be inactive, quiescent, active, or reactive [10]. 
The quiescent astrocytes are present in the normal CNS tissue (Fig. 1). 
Under conditions of nerve damage or bleeding, existing astrocytes are 
transformed into several subsets of reactive and scar-forming astrocytes. 
These cells have morphologically hypertrophy and their appendages 
increase and expand. In the astrocytes following the formation of reac
tive or scar-forming types, the expression of markers was also increased, 
such as GFAB, β-catenin, nestin, and N-cadherin. However, it should be 
noted that each of these astrocytes also has its own markers, and along 
with changes in their phenotype can be considered as detectors [11–13]. 
Reactive astrocyte markers contain matrix metalloproteinase-2 
(MMP-2), Plaur, MMP13, Axin2, Nes, and Ctnnb1 gens. The 
scar-forming astrocyte markers contain Cdh2, Sox9, Csgalnact1, Chst11, 
Pcanwas, Acan, and Slit2 gens [11–13]. 

1.3. Subtypes of reactive astrocytes 

Recently it has been confirmed that reactive astrocytes are divided 
into two subsets [14,15]: A1 astrocytes, which are harmful and induce 
death in neurons and oligodendrocytes, and A2 astrocytes, which are 
beneficial and promote neuronal viability and neuroregeneration. Neuro 
inflammation-induced A1 astrocytes to secrete neurotoxins that in turn 

induced rapid death in neurons and oligodendrocytes. The C3, CFB, and 
MX1S are the genes expressed in type A1 and considered as markers in 
this type of astrocyte [14,16]. The A1 astrocytes lose many of their 
normal functions, such as contributing to neuronal viability and growth, 
inducing fewer and weaker synapses than common astrocytes, and 
progressive killing of adult neurons. In addition, A1 astrocytes have 
been associated with a variety of human neurodegenerative diseases 
such as amyotrophic lateral sclerosis and Alzheimer’s disease [17,18]. 
Studies show that deleterious post-injury effects seen due to reactive 
astrocytes can be attributed to A1 reactive astrocytes. For instance, in 
Alzheimer’s disease, approximately 60% of astrocytes in the pre-frontal 
cortex positive for GFAB were also found to be C3 positive, indicating 
that A1 astrocytes promote neurodegenerative diseases [14]. Other 
studies have also mentioned that reactive astrocytes contribute to the 
progression of trauma and in the chronic pain that follows [19]. 
Nevertheless, the protective effect of reactive astrocytes on pain is still 
not completely understood, and it is unclear whether they play a dual 
role in chronic pain. We can hypothesize that A1 reactive astrocytes may 
be involved in chronic pain by releasing molecules such as inflammatory 
cytokines, chemokines and intracellular kinases [20]. 

The A2 astrocytes are induced by ischemia and promote neuronal 
viability as well as tissue regeneration. The A2 astrocytes contain spe
cific markers such as S100A10 belonging to the S100 protein family 
[21]. These cells promote tissue regeneration and neuroprotection by 
secreting several growth factors. Expression of the S100A10 gene in the 
A2 astrocytes is essential due to the fact that this expression leads to 
proliferation, cell membrane repair, and inhibition of apoptosis. In 
addition, these astrocytes increase the expression of an 
anti-inflammatory cytokine called TGF, which participates in the pro
cess of synaptogenesis and induces neuroprotection [22]. The active 
astrocytes can regenerate the damaged blood-brain barrier, limiting the 
penetration of peripheral leukocytes [23]. Hence, the favorable effects 
of reactive astrocytes after the injury can be attributed to the A2 reactive 
astrocytes, which may delay or even impede the progression of chronic 
pain. 

1.4. A1 to A2 reactive astrocyte transformation 

To date, several treatment strategies have been developed to inhibit 
the activation of astrocytes. Intrathecal administration of astrocyte in
hibitors, such as Valerine, Fluorocitrate, and L-1-amino-hexanedioic 
acid, effectively reverses mechanical allodynia, reducing abnormal pain 
and hyperalgesia in the pattern of pathological pain [24–27]. However, 
reactive astrocytes also play an essential role during tissue regeneration 
of the scarred central nervous system (CNS) and have positive effects on 
the healing process following SCI via the STAT3 signaling pathway [28]. 

Fig. 1. Changes in the morphology and function of quiescent astrocytes after an injury to the spinal cord. Quiescent astrocytes are able to be divided into reactive and 
scar-forming astrocytes; reactive astrocytes can be further classified into A1 and A2 astrocytes. Each of these cells has its own markers and functions after SCI. 
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In another study, the deletion of the STAT3 gene of the astrocytes in a 
mouse model inhibited astrogliosis as well as increased inflammatory 
factor penetration and the post-SCI enlargement of the injured area, 
which directly points to the dual role of the presence or absence of as
trocytes [29]. Therefore, specific inhibition of A1 reactive astrocytes 
may be a potential therapeutic target with more accurate effects and 
fewer side effects than the direct use of astrocyte inhibitors. 

1.5. NeuroD1 factor role after nervous system injury 

Chen et al. have shown that the transformation of glial cells into 
neurons restores and rebalances the count of neurons and glial cells, 
causing the return of glial scars to the nerve tissue [30]. NeuroD1 is an 
endogenous neural transcription factor (Fig. 2). It has been shown that 
when NeuroD1 is expressed by reactive astrocytes, the A1 reactive as
trocytes can become low-risk astrocytes and glial scar-forming astro
cytes can also convert to neurons [30,31]. In another study, a mouse 
model of Alzheimer’s disease showed that the reactive astrocytes 
became functional neurons following the expression of NeuroD1. The 
same phenomenon was observed in human cortical astrocytes in an in 
vitro study [32]. A similar study showed that when NeuroD1 is highly 
expressed in astrocytes, new neurons formed by the reactive astrocytes 
recover 40% of the neurons lost in ischemic injury and also regenerate 
motor and memory deficits (Yuchen Chen et al., 2018). These studies 
show that the A1 astrocytes have the potential to convert to the A2 as
trocytes and even to naive astrocytes. If the A1 astrocytes are involved in 
initiating chronic pain, promoting the process of converting the A1 as
trocytes to the A2 astrocytes or even to naive astrocytes could therefore 
be a potential therapeutic strategy for pain relief. 

Blocking upstream molecules or downstream targets of the A1 
reactive astrocytes may also be an effective therapeutic approach. 
Research has shown that the active microglia, by secreting substances 
such as Il-1α, TNF, and C1q, convert the naive astrocytes to A1 astro
cytes [14,33]. Research has demonstrated that the MFG-E8 regulates the 
process of A1/A2 astrocyte conversion through upregulation of 
PI3K-Akt pathways and downregulation of NF-κB pathways in the cul
ture medium [22]. Therefore, specific inhibition of these signaling 
molecules may reduce chronic pain. Moreover, in vivo A1/A2 astrocyte 
conversion is currently not well understood and needs further study. 

2. Oligodendrocytes 

The oligodendrocytes are the main source of myelin production in 
the CNS. These cells are prone to the most damage after SCI, which leads 
to extensive demyelination in the neurons of the affected area, which in 
turn increases the severity of the damage to the patient [34]. Since the 
development of cell transplantation, especially stem cell trans
plantation, as a promising post-SCI treatment strategy in recent years, 
the use of oligodendrocyte precursor cells (OPCs) has also received 
much attention for SCI therapy [35]. In the early stages after SCI, the 
proliferation of OPCs occurs close to the lesion site, but at a later time 
post-injury, proliferation can also be found in the spared white matter 
[36–38]. 

2.1. Differentiation of oligodendrocytes into their progenitor cells after 
SCI 

Various studies have shown that factors, such as TNF α and IL-1β, as 
well as oxidative and ischemic stress in the chronic phase after SCI, 
cause a severe decrease in the count of oligodendrocytes. Apoptosis in 
these cells begins 15 min after the injury and continues for up to 3 weeks 
thereafter [39–43,138]. Also, another factor called autophagy occurs at 
the site of injury, which begins 21 days after injury and occurs more 
frequently in oligodendrocytes than astrocytes. Becline-1 expression 
induces autophagy in the lesion site [44,45]. The differentiation of oli
godendrocytes into their progenitor cells is regulated by molecules such 
as IGF1, FGF2, and CNTF. A number of studies have shown that the OPCs 
not only can produce A1 and A2 astrocytes [34,46,47], but also can 
regenerate myelin after injury [48]. In addition, the ability to transform 
these cells into neurons has also been recently confirmed [49]. These 
cells are present in the CNS in both white matter and grey matter. After 
SCI, the proliferation rate of OPCs at the end of the first day will increase 
significantly, and this increase will continue for one week. The cell 
counts will remain high for about 4 weeks. In general, two types of OPCs 
may be seen around the site of injury, round-shape OPCs and short thick 
processes [50]. 

There are at least two sources of oligodendrocytes in the adult brain: 
Subventricular Zone (SVZ) progenitors and NG2 positive and PDGFα R- 
positive oligodendrocytes scattered throughout the nervous system 
[51–54]. These cells account for 5–8% of the cells in the CNS and are 

Fig. 2. Activation of Neuro D1 has effects on the microenvironment of injured neural tissue through: 1. generation of new neurons 2. reduction of toxic A1 astrocytes 
(increase in A2 astrocyte activity) 3. attenuation of toxic M1 microglia, and 4. repair of blood vessels and BBB integrity. 
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located in the optic nerve, motor cortex, corpus callosum, and cere
bellum and provide a source for oligodendrocyte replacement in adults 
[55]. Interestingly, these cells proliferate in adults with very little 
growth to keep their hemostatic levels constant, but their rate of pro
liferation is never the same as at the time of development or the time of 
injury. Oligodendrocytes grow 0.3% per year and replace oligodendro
cytes even in all adults [56]. All of this evidence suggests that myeli
nation is not limited to the developmental period and childhood, but 
continues into adulthood [34]. 

A recent study showed that demyelinating conditions (such as injury) 
cause the activation of mature OPCs and phenotypically return to fetal 
OPCs, producing cytokine IL1β and chemokine CCL2, increasing the 
OPC convergence and motility, and promoting their re-accumulation at 
the site of demyelination. This study showed that the OPCs are able to 
modulate post-injury inflammation and promote its regeneration [57]. 
Thus, one of the therapeutic targets could be the activation of oligo
dendrocytes at the site of injury and reverting their phenotype to 
neonatal oligodendrocytes via cytokines (such as IL1β) and chemokines 
(such as CCL2). 

There are many factors involved in regulating differentiation or 
increasing the count of OPCs after injury: (1) Growth factors such as 
FGF-2, PDGF-A, and CNTF [58–64]. (2) Neurotrophins such as BDNF 
and NT-3 [65–67]. (3) Chemokines and cytokines such as CXCL12 (also 
known as SDF-1), CXCL1, LIF and IL-17A [68–76]. (4) Transcription 
factors such as OLIG1 and HMG family such as SOX5 and SOX6 [77–80]. 
IL-17A activates the ERK1/2 pathway and converts OPCs into mature 
oligodendrocytes. However, this effect occurs through association with 
IL-1β, which itself is known to protect OPCs and their differentiators. 
Unlike the IL-17A, the IL-1β blocks the oligodendrocytes in the cell cycle 
and retards their mitotic potency [81]. Therefore, it is interesting to 
study the synergistic effects of elevated IL-17A and IL-1 levels after 
injury [73]. 

2.2. NG2+ cells and their role after CNS injury 

Glial progenitor cells that express the chondroitin sulfate proteo
glycan NG2, named NG2+ cells, compose the majority of proliferating 
cells in the adult CNS [82]. These cells more than any other cell type in 
the brain have been given many names: polydendrocytes; NG2 pro
genitor cells; synantocytes; NG2 cells; or more often, oligodendrocyte 
progenitor cells [83]. 

NG2+ OPCs are responsive to several different types of nerve injury 
[48], including demyelination, traumatic injury to the CNS, and chronic 
neurodegenerative diseases [84–87]. Furthermore, uncontrolled growth 
of these progenitors leads to tumor formation [88], and recent studies 
have suggested that NG2+ cells are likely to be a cell of origin for certain 
forms of glioma [89,90], highlighting the importance of understanding 
how the proliferation of these cells is controlled in vivo. 

It has been demonstrated that the NG2 - positive cells play a role in 
the formation and elimination of glial scars, suggesting that these pro
genitor cells are capable of detecting CNS injury and improving tissue 
regeneration [91]. After tissue injury, NG2/PDGFαR progenitor cells 
differentiate into oligodendrocytes and can induce remyelination in 
axons [92]. However, in patients who suffer from multiple sclerosis, 
changes in the CNS environment occur and cause OPCs to lose their 
ability to respond to damaged myelin over time and to limit their 
myelination capacity [139]. It is thought that the OPCs need to be 
activated for remyelination. These progenitor cells respond to growth 
factors, mitogens, chemokines, and cytokines, which increase their 
proliferation and motility toward the injury site as well as increase the 
expression of the oligodendrocyte differentiation gene. 

3. Astrocyte/ OPCs interaction after injury 

3.1. Effects of astrocytes on oligodendrocytes after injury 

Astrocytes, after an injury caused by various mechanisms, change to 
activated and reactive types and can affect the process of differentiation 
of oligodendrocytes through the secretion of different substances, which 
ultimately influences the myelination process. Some factors that have an 
excitatory effect on the myelination process and secreted by astrocytes 
include the following: factor-like protein (LIF), neuregulin-1 (NRG1), 
gamma-secretase (GS), ciliary neurotrophic factor (CNTF), insulin-like 
growth factor 1 (IGF-1), osteopontin (OPN), neurotrophin-3 (NT3) 
[93–99]. 

4. Factors secreted by astrocytes and enhancement of 
remyelination 

In the cuprizone model (a model for demyelination), the expression 
of TNFR2 in the astrocytes leads to the expression of autocrine CXCL12 
(which acts as a CXCR4 receptor on oligodendrocyte progenitor cells), 
which eventually leads to the proliferation and differentiation of OPCs 
[72]. The CNTF has been found in the astrocytes (both active and 
reactive) at the site of injury as well as around SCI, causing the regu
lation of FGF2 production in astrocytes in the early stages of remyeli
nation, indicating that the CNTF is an important cytokine in diseases 
associated with demyelination [93]. Interestingly, in two studies of the 
demyelination model in the SCI, white matter in the spinal cord revealed 
that the absence of astrocytes at the site of injury reduced 
oligodendrocyte-mediated remyelination and increased remyelination 
by Schwann cells [100,101]. Taken together, these results suggest that 
astrocyte-free regions at the site of injury either contain inhibitory sig
nals that block the final OPC differentiation or lack the signals necessary 
for the OPC to make the final differentiation. 

5. Astrocyte-derived inhibitors causing demyelination and 
reducing remyelination 

Initially, astrocytes were described as cells that inhibit the differen
tiation of oligodendrocytes, especially at the time of glial scar formation. 
The astrocytes that are present in the glial scar inhibit both myelination 
and remyelination through upregulation or downregulation of related 
factors and bioactive molecules such as PDGF, FGF2, and tenascin C, 
BMP2/4, and hyaluronan. Hyaluronan is a glycosaminoglycan (GAG) 
that interacts with CD44 (a receptor expressed in OPCs) and in some 
situations like lysolecithin-induced demyelination in white matter, this 
interaction impairs the remyelination process. One reason for this defect 
is that OPCs could not differentiate into myelin-producing cells at the 
site of injury, which is high in hyaluronan quantity (hyaluronan at the 
site of injury reduces the process of differentiation of OPCs into myelin- 
producing cells). Another study showed that the introduction of hya
luronan into the culture medium inhibited OPC differentiation [102]. 

Astrocyte-derived endothelin-1 (ET-1) is also known to be an in
hibitor of the differentiation process of OPCs through increased 
expression of Jagged 1 that causes Notch activation on OPCs [103]. 
Researchers have shown that the level of myelination was higher after 
transplantation of neonatal OPCs to the demyelinated site without as
trocytes compared to the injury site with astrocytes [104] (influence of 
astrocytes on remyelination at the site of injury). Another study of SCI 
showed that preventing astrocyte glial scars significantly reduces the 
stimulation of axon regeneration [105]. Although no data were avail
able on myelin in this study, they indicated a positive role for astrocytes 
in the regeneration process. Overall, these studies indicate that glial cell 
interactions in the myelination process are largely influenced by the 
surrounding environment. Depending on what stage of astrocytes is 
activated, they can exert their own stimulatory or inhibitory effects on 
the development process of oligodendrocytes. In addition to the 
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different types of astrocytes, the distance of these cells to the site of 
injury must also be considered, as relatively small changes in the envi
ronment may have different effects on the behavior of oligodendrocytes. 
Nash et al. [106] proposed the hypothesis that, whereas the astrocytes 
that are distal to the activated cells are more likely to play a role in 
regeneration through the secretion of growth factors and cytokines, the 
astrocytes at the site of injury show more reaction (reactive astrocytes) 
and may impede the remyelination process. The process of activation 
and the elevation of astrocytes present in the distal part of the injury site 
while inhibiting the activity of astrocytes at the site of injury must be 
taken into account. 

5.1. Relation between ependymal cells and OPCs 

Interestingly, recent studies have demonstrated that the ependymal 
cells around the spinal canal and at the site of the injury can be a source 
of oligodendrocytes. Although the level of the proliferative activity in 
ependymal cells is only one-tenth of that of OPCs under normal condi
tions, the ependymal cells proliferate twice as much as OPCs under 
injury. Surprisingly, some of these cells eventually differentiate into 
functional oligodendrocytes [107]. A new study has shown a cholinergic 
increase in the proliferation of ependymal cells, which has led to 
increased oligodendrocyte markers in the spinal cord tissue [108]. Other 
studies have also indicated that ependymal cells differentiate into as
trocytes and oligodendrocytes after SCI [107–109]. This gives rise to an 
idea that proposes the production of oligodendrocytes by ependymal 
cells. One research idea could be the investigation of ependymal cells 
and their role in the differentiation of oligodendrocytes after injury. 
Given the evidence that these cells can be differentiated into oligoden
drocytes, they can be used as a therapeutic approach in combination 
with other methods in regenerative medicine. 

5.2. Macrophage and microglia 

Macrophages are a major cell type of the immune system and 
constitute both resident tissue and circulating monocyte-derived sub
sets. Here, we have focused on microglia, resident macrophage in CNS, 
and the first line of defense against pathological circumstances and 
nervous tissue damages. As a matter of fact, these cells have crucial rules 
in the regulation of CNS disorders [58]. Thus, most current treatment 
strategies focus on targeting this subset. To our mind, a better 

understanding of the biology of macrophages gives birth to a discussion 
of new routes for therapeutic intervention. 

5.3. Timespan (time-course) and source of macrophages after SCI 

5.3.1. Splenic versus bone marrow-derived macrophages 
After SCI, the injured tissue secretes cytokines and chemokines into 

the circulatory system, recruiting monocytes to the injury site. These 
monocytes become macrophages in several ways upon reaching the 
injury site. These macrophages play various roles in wound healing. The 
first wave begins on day 3 after injury and reaches its maximum level on 
day 7 (Fig. 3). After a slight decrease, the second wave initiates on day 
14 and reaches its maximum level on day 60 and remains at that level 
until day 180 [110,111]. This form of an increase in macrophage counts 
is found in humans, although it is unclear whether the second wave of 
elevation is also seen in humans [112,113]. Until now, bone marrow 
stem cells were known only as a source for monocytes, but recently re
searchers have found that the spleen also acts as a source of monocytes 
during injury [112]. A study showed a significant decrease in macro
phage counts at the SCI site after splenectomy [114]. The macrophages 
remain at the site of injury for a long time, but the life span of monocytes 
is 1–3 days, and the macrophages produced by these monocytes have a 
life span of several weeks [115]. Therefore, the question arises as to how 
macrophages are replaced regularly during SCI or where they originate 
in these types of injuries. The old answer to this question is that since 
circulating monocytes eventually become macrophages, the emergence 
of new macrophages requires more monocyte influx. Although the evi
dence suggests that the local proliferation of macrophages at the site of 
injury affects their population growth, the local proliferation of mac
rophages (at the site of SCI) needs further research. 

5.4. Microglia, resident macrophage in CNS 

Microglia make up 5–10% of all central nervous system cells. It has 
been previously shown that in a healthy condition, the microglial pop
ulation in the brain remains constant, meaning that there is a balance 
between cell death and cell proliferation [116]. However, there was 
little information about the microglial population in the spinal cord and 
how these cells react following injury. The dynamic response of micro
glia cells to SCI has been confirmed in many studies [8,116–119]. 
Lacroix et al. in a study have shown that microglia are immediately 

Fig. 3. The three main sources of Macrophage 
cells after spinal cord injury (SCI) are represented 
in numeric format. The first wave of Macrophage 
influx occurs on day 3 and reaches a peak on day 7. 
The second wave begins on day 14 and peaks again 
on day 60. The main source of first wave macro
phages is the spleen and mostly contains M1 
Macrophage and the second wave of macrophages 
could be from either the bone marrow or from a 
self-renewing source at the injury sites and con
tains both M1 and M2 macrophages.   
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recruited in the injury site in the spinal cord. In terms of proliferation, 
they scrutinized a specific antibody of microglia and found that the 
number of microglia decreased slightly 24 h after the lesion. However, 
the population changed and there was a significant increase since then, 
showing a four-fold increase at day 4, continuing to increase at day 14, 
reaching up to 10 times compared to day 1 (Fig. 4) [116,118]. Abda
nipour et al. reported that microglia profile activation reached the 
highest level at day 2 after SCI [1]. Another study on a mouse model of 
SCI observed that microglia had reached up to a peak on day 7 and then 
was reduced at day 14 [121]. All in all, it is obvious that microglial cells 
are highly dynamic and proliferate extensively during the first two 
weeks after SCI. 

There are two characteristics of microglia that separate this cell type 
from other tissue-resident macrophages—limitations on prenatal origin, 
and their capacity for regeneration and longevity [122]. After birth, the 
macrophage cells residing in each tissue, as well as the monocytes 
existing in the circulation, are continuously replaced by myeloid cells, 
which is not the case with microglia cells [123,124]. Activation of 
microglia is the first response of the nervous system after SCI. This 
presence is provided by two sources, which include microglia at the site 
of injury and microglia recruited to the site of injury through blood flow. 
Extensive research has been conducted on the activity of microglia after 
SCI, which points to the dual role of these cells. Researchers have found 
that microglia activity is like a double-edged sword that can both be 
useful for healing and remodeling after injury and exacerbating the 
extent of post-injury damage [116]. 

5.5. Macrophage/microglia polarization 

In terms of polarization, macrophages have been classically divided 
into M1 and M2 groups by Mills et al., in 2000 [125]. The M2 microglia, 
in turn, can be divided into three subsets, namely, alternative activation 
(M2a), alternative type II activation (M2b), and acquired deactivation 
(M2c) [126,127]. However, scientists now recognize that M1 and M2 
microglia are not perceptibly different from each other and that the 
polarization state is a continuum process between them [128]. 
Furthermore, the type of polarized activation of macrophages depends 
on many factors such as the microenvironment, stage, course, and 
severity of the posttraumatic process [129,130], and the M1/M2 para
digm can be variable in response to different stimuli [128]. It should be 
noted that many scientists place macrophages and microglia into the 
same cell population and make no distinction between them, and usually 
have been using pan markers to identify them. 

5.6. Relation between M2/M1 macrophage ratio and repair after injury 

Subsequent studies have shown that M1 macrophages produce pro- 
inflammatory cytokines and chemokines and kill their surrounding 
cells and inhibit cell proliferation, and in contrast M2 macrophages 
promote cell proliferation and tissue growth by secreting growth factors, 
neurotrophic factors and anti-inflammatory cytokines [131,132]. These 

results led the researchers to think that the switch of macrophage po
larization to the M2 type would alleviate injury. Kigerl et al. [130], in 
the first study, showed that M1 macrophages accounted for most of the 
macrophages at the site of injury and that M2 macrophages had a 
temporary presence within the first 7 days after injury. 

At transcriptional levels, IFN-α and LPS have been shown to be 
classical receptors in M1 macrophages [133]. The LPS receptor, TLR4, 
plays a key role in the degradation process at the injury site. The TNF 
and IL-1β cytokines are highly expressed after SCI [73,134]. The highest 
level of mRNA expression was in TNF 1 h after injury and IL-1β 12 h after 
injury [73]. In contrast, IL-4 and IL-10 are classical ligands for M2 
macrophages. The IL-4 has a major effect on the M2 macrophage po
larization by activating STAT6 [135]. The IL-10 also indirectly inhibits 
the expression of pro-inflammatory cytokines through the JAK1/STAT3 
pathway [136]. 

The source of macrophages is another case that has been investigated 
so far. One possibility is that the injury site environment affects the 
monocytes recruited to the area and preferentially polarizes them to the 
M1 type. However, the effect of the injury environment on M1 macro
phages is one of the features of SCI. This has led various researchers to 
focus on changing the environment to reduce the M1 macrophage 
counts. For example, the ChABC enzyme, by destroying CSPGs, causes 
M2 macrophages to form at the injury site [137]. 

At present, it is quite clear that macrophages play a key role in the 
wound healing process after SCI. However, some fundamental issues 
need to be addressed. The macrophages originate from splenic mono
cytes in acute conditions, but there appears to be an alternative source 
for chronic macrophages. Is there an endogenous source of macrophages 
that causes these cells to regenerate? Or are these macrophages derived 
from the circulation into the lesion area due to the continuous entry of 
bone marrow-derived monocytes? These are the issues that need to be 
addressed. Although M1/M2 classifications are conceptually useful for 
macrophages, their polarization steps are still unclear for in vivo 
conditions. 

6. Conclusion 

Glial cells in the nervous system can play both beneficial and detri
mental roles after SCI, some of which are summarized in this article. 
With this in mind, the most comprehensive treatment strategies for 
better recovery and improvement after SCI can include the following:  

1) Increasing the A2/A1 astrocyte ratio,  
2) Increasing the M2/M1 macrophage ratio, and  
3) Increasing the differentiation power of OPCs cells and turning them 

into oligodendrocytes or even neurons. Obviously, applying a 
comprehensive strategy that covers all of these phenomena simul
taneously can give a better response in terms of injury inhibition and 
trauma restriction. By studying these cells more closely and focusing 
more on their function, solutions can be highlighted that involve the 
beneficial roles of these cells in the nervous system, thereby taking 
the small but necessary step to helping the healing and repair process 
after spinal injury. 
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