7 research outputs found
Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves
The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue
Une région intrinsÚquement désordonnée dans OSBP contrÎle la géometrie et la dynamique du site de contact membranaire
Oxysterol binding protein (OSBP) is a lipid transfer protein that regulates cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) domain, two coiled-coils, a âtwo phenylalanines in acidic tractâ (FFAT) motif and a C-terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP creates membrane contact sites between ER and Golgi, allowing the counter-transport of cholesterol and PI(4)P by the ORD. OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, composed mostly of glycine, proline and alanine. We demonstrate that the presence of disordered N-terminus increases the Stokeâs radius of OSBP truncated proteins and limits their density and saturation level on PI(4)P-containing membrane. The N-terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered sequence promotes symmetrical liposome aggregation. Similarly, we observe a difference in OSBP membrane distribution on tethered giant unilamellar vesicles (GUVs), based on the presence/absence of N-terminus. Protein with disordered sequence is homogeneously distributed all over the GUV surface, whereas protein without N-terminus tends to accumulate at the interface between two PI(4)P-containing GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBPderived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A. Findings from our in vitro experiments are confirmed in living cells, where N-terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low complexity N-terminal sequences, suggesting a general effect.La protĂ©ine OSBP est un transporteur de lipides qui rĂ©gule la distribution cellulaire du cholestĂ©rol. OSBP comprend un domaine PH, deux sĂ©quences « coiled coil », un motif FFAT (deux phĂ©nylalanines dans un environement acide), et un domaine de liaison de lipides (ORD) Ă son extrĂ©mitĂ© C-terminale. Le domaine PH interagit avec le PI(4)P et la petite protĂ©ine G Arf1-GTP au niveau du Golgi, alors que le motif FFAT interagit avec la protĂ©ine VAP-A, rĂ©sidente du rĂ©ticulum endoplasmique (RE). En liant simultanĂ©ment tous ces dĂ©terminants, OSBP stabilise des sites de contact membranaire entre RE et Golgi, permettant ainsi un contre-Ă©change cholestĂ©rol / PI(4)P par l'ORD. OSBP contient Ă©galement une longue sĂ©quence N-terminale dâenviron 80 aa, intrinsĂšquement dĂ©sordonnĂ©e, composĂ©e principalement de glycine, proline et d'alanine. Nous dĂ©montrons que la prĂ©sence de ce N-terminus dĂ©sordonnĂ© augmente le rayon de Stoke de OSBP tronquĂ©e du domaine ORD, et limite sa densitĂ© dâassociation sur la membrane portant le PI(4)P. La protĂ©ine dĂ©pourvue du N terminus favorise l'agrĂ©gation symĂ©trique des liposomes PI(4)P (mimant la membrane du Golgi) par les deux domaines PH du dimĂšre OSBP, alors que la prĂ©sence de la sĂ©quence dĂ©sordonnĂ©e empĂȘche cette association symĂ©trique. De mĂȘme, nous observons que la distribution dâOSBP sur la membrane de vĂ©sicules unilamellaires gĂ©antes (GUV) varie selon la prĂ©sence ou l'absence du N-terminus. En prĂ©sence de la sĂ©quence dĂ©sordonnĂ©e, la protĂ©ine est rĂ©partie de maniĂšre homogĂšne sur toute la surface du GUV, alors que la protĂ©ine sans N-terminal a tendance Ă s'accumuler Ă l'interface entre deux GUV de type Golgi. Cette accumulation locale ralentit fortement la mobilitĂ© de la protĂ©ine Ă lâinterface. Un effet similaire du N-terminal sur la dynamique des protĂ©ines est observĂ© lorsque lâassociation de membranes de type ER et Golgi est assurĂ© par des protĂ©ines monomĂ©riques (dĂ©pourvue du coiled coil) en prĂ©sence de Vap-A. Les rĂ©sultats de nos expĂ©riences in vitro ont Ă©tĂ© confirmĂ©s en cellules vivantes, oĂč la sĂ©quence intrinsĂšquement dĂ©sordonnĂ©e contrĂŽle le recrutement dâOSBP sur les membranes Golgiennes, sa mobilitĂ© et sa dynamique dâactivitĂ© au cours des cycles de transfert de lipides. La plupart des protĂ©ines de la famille dâOSBP contiennent des sĂ©quences N-terminales de faible complexitĂ©, suggĂ©rant un mĂ©canisme gĂ©nĂ©ral de rĂ©gulation
An intrinsically disordered region of OSBP controls membrane contact site geometry and dynamics
La protĂ©ine OSBP est un transporteur de lipides qui rĂ©gule la distribution cellulaire du cholestĂ©rol. OSBP comprend un domaine PH, deux sĂ©quences « coiled coil », un motif FFAT (deux phĂ©nylalanines dans un environement acide), et un domaine de liaison de lipides (ORD) Ă son extrĂ©mitĂ© C-terminale. Le domaine PH interagit avec le PI(4)P et la petite protĂ©ine G Arf1-GTP au niveau du Golgi, alors que le motif FFAT interagit avec la protĂ©ine VAP-A, rĂ©sidente du rĂ©ticulum endoplasmique (RE). En liant simultanĂ©ment tous ces dĂ©terminants, OSBP stabilise des sites de contact membranaire entre RE et Golgi, permettant ainsi un contre-Ă©change cholestĂ©rol / PI(4)P par l'ORD. OSBP contient Ă©galement une longue sĂ©quence N-terminale dâenviron 80 aa, intrinsĂšquement dĂ©sordonnĂ©e, composĂ©e principalement de glycine, proline et d'alanine. Nous dĂ©montrons que la prĂ©sence de ce N-terminus dĂ©sordonnĂ© augmente le rayon de Stoke de OSBP tronquĂ©e du domaine ORD, et limite sa densitĂ© dâassociation sur la membrane portant le PI(4)P. La protĂ©ine dĂ©pourvue du N terminus favorise l'agrĂ©gation symĂ©trique des liposomes PI(4)P (mimant la membrane du Golgi) par les deux domaines PH du dimĂšre OSBP, alors que la prĂ©sence de la sĂ©quence dĂ©sordonnĂ©e empĂȘche cette association symĂ©trique. De mĂȘme, nous observons que la distribution dâOSBP sur la membrane de vĂ©sicules unilamellaires gĂ©antes (GUV) varie selon la prĂ©sence ou l'absence du N-terminus. En prĂ©sence de la sĂ©quence dĂ©sordonnĂ©e, la protĂ©ine est rĂ©partie de maniĂšre homogĂšne sur toute la surface du GUV, alors que la protĂ©ine sans N-terminal a tendance Ă s'accumuler Ă l'interface entre deux GUV de type Golgi. Cette accumulation locale ralentit fortement la mobilitĂ© de la protĂ©ine Ă lâinterface. Un effet similaire du N-terminal sur la dynamique des protĂ©ines est observĂ© lorsque lâassociation de membranes de type ER et Golgi est assurĂ© par des protĂ©ines monomĂ©riques (dĂ©pourvue du coiled coil) en prĂ©sence de Vap-A. Les rĂ©sultats de nos expĂ©riences in vitro ont Ă©tĂ© confirmĂ©s en cellules vivantes, oĂč la sĂ©quence intrinsĂšquement dĂ©sordonnĂ©e contrĂŽle le recrutement dâOSBP sur les membranes Golgiennes, sa mobilitĂ© et sa dynamique dâactivitĂ© au cours des cycles de transfert de lipides. La plupart des protĂ©ines de la famille dâOSBP contiennent des sĂ©quences N-terminales de faible complexitĂ©, suggĂ©rant un mĂ©canisme gĂ©nĂ©ral de rĂ©gulation.Oxysterol binding protein (OSBP) is a lipid transfer protein that regulates cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) domain, two coiled-coils, a âtwo phenylalanines in acidic tractâ (FFAT) motif and a C-terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP creates membrane contact sites between ER and Golgi, allowing the counter-transport of cholesterol and PI(4)P by the ORD. OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, composed mostly of glycine, proline and alanine. We demonstrate that the presence of disordered N-terminus increases the Stokeâs radius of OSBP truncated proteins and limits their density and saturation level on PI(4)P-containing membrane. The N-terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered sequence promotes symmetrical liposome aggregation. Similarly, we observe a difference in OSBP membrane distribution on tethered giant unilamellar vesicles (GUVs), based on the presence/absence of N-terminus. Protein with disordered sequence is homogeneously distributed all over the GUV surface, whereas protein without N-terminus tends to accumulate at the interface between two PI(4)P-containing GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBPderived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A. Findings from our in vitro experiments are confirmed in living cells, where N-terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low complexity N-terminal sequences, suggesting a general effect
Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP
International audienc
An Intrinsically Disordered Region in OSBP Acts as an Entropic Barrier to Control Protein Dynamics and Orientation at Membrane Contact Sites
International audienc