24 research outputs found

    Fast recognition of alternating groups of unknown degree

    Full text link
    We present a constructive recognition algorithm to decide whether a given black-box group is isomorphic to an alternating or a symmetric group without prior knowledge of the degree. This eliminates the major gap in known algorithms, as they require the degree as additional input. Our methods are probabilistic and rely on results about proportions of elements with certain properties in alternating and symmetric groups. These results are of independent interest; for instance, we establish a lower bound for the proportion of involutions with small support.Comment: 31 pages, submitted to Journal of Algebr

    On finite simple images of triangle groups

    Get PDF
    For a simple algebraic group G in characteristic p, a triple (a, b, c) of positive integers is said to be rigid for G if the dimensions of the subvarieties of G of elements of order dividing a, b, c sum to 2 dim G. In this paper we complete the proof of a conjecture of the third author, that for a rigid triple (a, b, c) for G with p > 0, the triangle group Ta,b,c has only finitely many simple images of the form G(pr). We also obtain further results on the more general form of the conjecture, where the images G(pr) can be arbitrary quasisimple groups of type G

    An L 3 -U 3 -quotient algorithm for finitely presented groups

    Get PDF
    The thesis describes the development of an L3-U3-quotient algorithm for finitely presented groups on two generators, which finds all factor groups of a finitely presented group which are isomorphic to one of the groups PSL(3, q), PSU(3, q), PGL(3, q), or PGU(3, q). Here q is an arbitrary prime power which is not part of the input of the algorithm, so the algorithm finds all possible choices of q by itself. The motivation for such an algorithm is to study and understand finitely presented groups. Results from the middle of the last century show that central questions concerning these groups are undecidable in general. The most famous is the word-problem: there cannot exist an algorithm which decides the equality of two elements of a finitely presented group. Nevertheless, algorithms have been developed which give structural information about finitely presented groups. One class of such algorithms are the quotient algorithms, which find all factor groups of a given finitely presented group that have a certain structure. Until a few years ago, all of those algorithms only worked for a finite set of factor groups or for soluble groups. In 2009, Plesken and Fabia'nska developed the first algorithm which can compute all factor groups in an infinite class of non-soluble groups. It determines all factor groups of a finitely presented group G which are isomorphic to one of the groups PSL(2, q) or PGL(2,q), simultaneously for any prime power q. The present thesis is a continuation of those ideas. For the formulation of the algorithm, various results from representation theory and from commutative algebra are needed. These are stated and proved in this work. The character of a representation has been an important tool in ordinary representation theory, i.e., of representations of finite groups over fields of characteristic zero. The results in this thesis show that it is still an invaluable tool for representations of arbitrary groups over arbitrary fields. A method in commutative algebra is the determination of all minimal associated prime ideals of a given ideal. This dissertation presents an algorithm which improves on the runtime of existing algorithms for important examples. The results in representation theory and in commutative algebra are applied to the L3-U3-quotient algorithm, but they are of general interest as well. The L3-U3-quotient algorithm is implemented in the computer algebra system Magma. This implementation is applied to several examples of finitely presented groups. Furthermore, results of this thesis are used to prove generalizations of theorems of P. Hall and Lubotzky

    An L 3 -U 3 -quotient algorithm for finitely presented groups

    No full text
    The thesis describes the development of an L3-U3-quotient algorithm for finitely presented groups on two generators, which finds all factor groups of a finitely presented group which are isomorphic to one of the groups PSL(3, q), PSU(3, q), PGL(3, q), or PGU(3, q). Here q is an arbitrary prime power which is not part of the input of the algorithm, so the algorithm finds all possible choices of q by itself. The motivation for such an algorithm is to study and understand finitely presented groups. Results from the middle of the last century show that central questions concerning these groups are undecidable in general. The most famous is the word-problem: there cannot exist an algorithm which decides the equality of two elements of a finitely presented group. Nevertheless, algorithms have been developed which give structural information about finitely presented groups. One class of such algorithms are the quotient algorithms, which find all factor groups of a given finitely presented group that have a certain structure. Until a few years ago, all of those algorithms only worked for a finite set of factor groups or for soluble groups. In 2009, Plesken and Fabia'nska developed the first algorithm which can compute all factor groups in an infinite class of non-soluble groups. It determines all factor groups of a finitely presented group G which are isomorphic to one of the groups PSL(2, q) or PGL(2,q), simultaneously for any prime power q. The present thesis is a continuation of those ideas. For the formulation of the algorithm, various results from representation theory and from commutative algebra are needed. These are stated and proved in this work. The character of a representation has been an important tool in ordinary representation theory, i.e., of representations of finite groups over fields of characteristic zero. The results in this thesis show that it is still an invaluable tool for representations of arbitrary groups over arbitrary fields. A method in commutative algebra is the determination of all minimal associated prime ideals of a given ideal. This dissertation presents an algorithm which improves on the runtime of existing algorithms for important examples. The results in representation theory and in commutative algebra are applied to the L3-U3-quotient algorithm, but they are of general interest as well. The L3-U3-quotient algorithm is implemented in the computer algebra system Magma. This implementation is applied to several examples of finitely presented groups. Furthermore, results of this thesis are used to prove generalizations of theorems of P. Hall and Lubotzky

    Computing minimal associated primes in polynomial rings over the integers

    Get PDF
    AbstractAn algorithm is presented to compute the minimal associated primes of an ideal in a polynomial ring over the integers. It differs from the known algorithms insofar as it avoids having to compute Gröbner bases over the integers until the very end, thereby eliminating one of the bottlenecks of those algorithms

    DETERMINING ASCHBACHER CLASSES USING CHARACTERS

    No full text

    C-groups of PSL(2, q) and PGL(2, q)

    No full text
    We classify the C-group representations of the groups PSL(2, q) and PGL(2, q). We obtain that the C-rank of PSL(2, q) and PGL(2, q) is 3 except when q∈. {7, 9, 11, 19, 31} for PSL(2, q) and when q= 5 for PGL(2, q), in which case it is 4. We provide all representations of rank four.SCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore