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An algorithm is presented to compute the minimal associated
primes of an ideal in a polynomial ring over the integers. It
differs from the known algorithms insofar as it avoids having
to compute Gröbner bases over the integers until the very end,
thereby eliminating one of the bottlenecks of those algorithms.
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1. Introduction

This paper presents an algorithm to compute the minimal associated primes of an ideal in a
polynomial ring over the integers, based on an algorithm by Fabiańska (Fabiańska, 2009).

Efficient algorithms to compute the primary decomposition of ideals over fields have been known
for quite a while (see (Decker et al., 1999) for an overview), and they have been implemented in
most computer algebra systems for commutative algebra (for example, Magma (Bosma et al., 1997),
Singular (Decker et al., 2010), and Macaulay2 (Grayson and Stillman, 2010)). The idea in Fabiańska’s
algorithm is to use these algorithms to compute the minimal associated primes over the rationals
and over various finite fields, and combine these results to get the minimal associated primes over
the integers. Of course, one has to know over which finite fields the computations have to be done,
or, in other words, one has to know which primes can occur in some minimal associated prime
ideal. The first step in the algorithm is therefore to compute a Gröbner basis over the integers to
get a sufficient list of those primes. Unfortunately, this initial computation is often the bottleneck
of the whole algorithm, since a Gröbner basis calculation over the integers can be several orders of
magnitude slower than a Gröbner basis calculation over a field. It is therefore desirable to find away to
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compute the necessary primes which avoids calculations over the integers. This is done in this paper,
where the computation over the integers is replaced by several computations over the rationals and
over finite fields, which is usually still much faster than a computation over the integers.

The need for an efficient algorithm to compute the minimal associated primes over the integers
arose in computations with the L2-quotient algorithm (see (Plesken and Fabiańska, 2009; Fabiańska,
2009)) and the L3-U3-quotient algorithm (presented in a forthcoming paper). In the last section, I
will present several examples of ideals which came up in this context, and also from other sources,
together with timings taken with and without this new method.

Note that recently an algorithm was developed to compute a primary decomposition over the
integers (see (Pfister et al., 2011)), which is implemented in Singular.

2. The algorithm

In thiswhole section, I is an ideal of the ringZ[x] = Z[x1, . . . , xn], and p ∈ Z is someprimenumber.
Furthermore, νp:Z⟨p⟩[x] → Fp[x] is the canonical epimorphism, whereZ⟨p⟩ = {

f
g | f , g ∈ Z, p - g}; we

alsowrite f instead of νp(f ) for f ∈ Z⟨p⟩[x], andX instead of νp(X) for subsetsX ⊆ Z⟨p⟩[x]. Furthermore,
we set QI := I ⊗Z Q, and minAss(I) denotes the set of minimal associated primes of I .

For q ∈ Z a prime or zero, define minAssq(I) := {P ∈ minAss(I) | P ∩ Z = ⟨q⟩Z}. Then it is well
known that minAss0(I) = {P ′

∩ Z[x] | P ′
∈ minAss(QI)} (see, for example, (Atiyah and Macdonald,

1969)). Prime ideals containing an integer are handled as follows.
Proposition 1 (Fabiańska, 2009, Lemma 1.3.11). For any prime p, we have

minAssp(I) = {ν−1
p

P
|P ∈ minAss


νp(I)


with ν−1

p

P
⊉ P ′ for all P ′

∈ minAss0(I)}.

Proof. Let P1, . . . , Pr be the minimal associated primes of I , andP1, . . . ,Ps the minimal associated
primes of I . Then, for any i ∈ {1, . . . , s}, we have

P1 ∩ · · · ∩ Pr =
√
I ⊆ ν−1

p


I


⊆ ν−1
p

Pi,
so ν−1

p

Pi contains some minimal associated prime of I .
Now let j ∈ {1, . . . , r} such that p ∈ Pj. ThenP1 ∩ · · · ∩Ps ⊆ νp(Pj), soPi ⊆ νp(Pj) for some i, and

hence ν−1
p

Pi ⊆ Pj. But we proved above that Pk ⊆ ν−1
p

Pi for some k, and hence Pk = ν−1
p

Pi = Pj,
by the minimality of Pj. �

Obviously, minAss(I) = minAss0(I)∪


p prime minAssp(I). Thus, instead of doing the computation
over the integers, we can do (almost) all calculations over the rationals and over finite fields.
Example 2. Let I = ⟨2x2 + 3x + 1, x2 + 3x + 2⟩ E Z[x]; set p := 3. Then minAss0(I) = {⟨x + 1⟩} and
minAss


I


= {⟨x + 1⟩, ⟨x + 2⟩}. Using Proposition 1, it follows that ⟨3, x + 2⟩ is a minimal associated
prime of I , but ⟨3, x + 1⟩ is not.

For p = 2, we get minAss

I


= {⟨x + 1⟩⟩}, so minAss2(I) = ∅.
It remains to find the primes p for which minAssp(I) is non-empty.
One way to do this is the following (used in (Fabiańska, 2009)). There exists a multiplicatively

closed subset S ⊆ Z generated by finitely many primes such that QI ∩ Z[x] = S−1I ∩ Z[x]. Then
every prime contained in an associated prime of I is contained in S (Atiyah and Macdonald, 1969,
Proposition 4.9). To determine such S one can use Gröbner bases over Z.
Proposition 3 (Adams and Loustaunau, 1994, Proposition 4.4.4). Let G be a Gröbner basis of I, and let S
be generated by the prime factors of leading coefficients of G. Then QI ∩ Z[x] = S−1I ∩ Z[x].

Unfortunately, Gröbner basis computations over the integers can be very expensive and several
orders of magnitudes slower than a calculation over Q or over a finite field. We would therefore like
to have another criterion which is less expensive.

It is an elementary fact that p occurs in an associated prime of I if and only if (I : p) ≠ I . This gives
a criterion to decide for a single prime p whether we should bother to compute minAssp(I), but this
decision still has to be made for every single prime. Thus, as a first step, the set of primes one has to
consider is reduced to a finite set.
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Proposition 4. Let G be a reduced Gröbner basis of QI (we always assume that a reduced Gröbner basis
consists of monic elements). Let S ⊆ Z be the multiplicatively closed subset generated by all prime divisors
of denominators which occurred during Buchberger’s algorithm applied to any generating set of I, and
T ⊆ S the multiplicatively closed subset generated by all prime divisors of denominators of G. Then:

1. For any prime p ∈ Z−S we have (I : p) = I . In particular, the prime numberswhich occur in associated
primes of I are contained in S.

2. Assume that T is generated by p1, . . . , pℓ, and that S is generated by p1, . . . , pm. Then

T−1(I : (pℓ+1 · · · pm)∞) = ⟨G⟩T−1Z[x].

Proof. Let I = ⟨f1, . . . , fr⟩. Then any g ∈ G can be written as g =
∑r

i=1
zi
si
fi with zi ∈ Z[x] and si ∈ S,

for all i.

1. Let f ∈ (I : p) ⊆ QI . Then f ∈ QI ∩ Z[x], so f =
∑

g∈G λgg with λg ∈ T−1Z[x], since all g ∈ G are
monic; thus sf ∈ I for a suitable s ∈ S. But pf ∈ I , and p and s are coprime; hence f ∈ I .

2. By the first statement, we have QI ∩ Z[x] = S−1I ∩ Z[x] = (I : (p1 · · · pm)∞), so localizing gives

T−1(I : (pℓ+1 · · · pm)∞) = T−1(QI ∩ Z[x]) = QI ∩ T−1Z[x].

But G is a Gröbner basis of QI ∩ T−1Z[x] E T−1Z[x], which gives the result. �

Example 5. Let I = ⟨2x2 + 3x + 1, x2 + 3x + 2⟩ E Z[x] be as in Example 2. Depending on the order
in which the two generators are processed, S is generated either by 2, or by 2 and 3. In both cases,
Example 2 proves that minAss(I) = {⟨x + 1⟩, ⟨3, x + 2⟩}.

Note that this proposition is independent of the monomial order used in the computation of the
Gröbner basis. In particular, we only have to consider those primes which occur as denominators in
anyGröbner basis calculation ofQI . This can be used to our advantage in twoways. First, by computing
a new reducedGröbner basis, one can try to reduce the number of primeswe have to consider. Second,
and perhaps evenmore importantly, it can help to determine the primes in the first place. The problem
is that during the computation the denominators can get very big, often the size of several hundred
decimal digits, so there is no efficient way to compute the prime factors of this number. Let d be such a
denominator. The solution is to compute another reduced Gröbner basis and collect the denominators
D of the computation. Then, instead of keeping d, only the greatest common divisors of d with all
elements of D are necessary.

While the proposition above reduces the number of primes to consider to a finite set, this set can
still be very big, and computing the minimal associated primes of I modulo all these primes can be
expensive. So remember again the criterion (I : p) ≠ I to decide if p is necessary. Of course, this could
be decided using several Gröbner basis calculations over the integers, but this should be avoided.
However, the equivalent inequation (I : p∞) ≠ I can be decided with a calculation over the field Fp:

Lemma 6. We have (I : p∞) % I if and only if (I : p∞) % I .

Proof. Assume that (I : p∞) % I , and let ℓ ∈ N be minimal with (I : pℓ) = (I : p∞). Choose
f ∈ (I : pℓ) − (I : pℓ−1), and suppose that f ∈ I . Then f = g for some g ∈ I , so p|(f − g); in particular,
f−g
p ∈ (I : p∞). But pℓ f−g

p = pℓ−1f − pℓ−1g ∉ I , by the choice of f , which is a contradiction. �

Proposition 7. Let G, S, and T be as in Proposition 4, and let p be a prime not contained in T . Then p is
contained in an associated prime of I if and only if


G


Fp[x]

% I .

Proof. Wemay assume that p ∈ S. Then

G


Fp[x]

= ⟨G⟩T−1Z[x] = (I : p∞), by the second statement of
Proposition 4. The claim now follows by the lemma. �

Now the algorithm can be formulated; it is presented as Algorithm 1.
Note that the only time a Gröbner basis calculation over Z is necessary is in line 2. The decision in

line 5 whether D cannot be factored, or if |S| is too big, is a matter of experimentation. The current
implementation tries in lines 5–9 only to factor integers of size less than 2150 and to get the size of
S below 20. If after five Gröbner basis computations over the rationals this cannot be established, it
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Algorithm 1 Compute the minimal associated primes of an ideal
Input: An ideal I E Z[x].
Output: The set {P1, . . . , Pk} of minimal associated prime ideals of I .
1: Compute the minimal associated primes {P ′

1, . . . , P
′
r} of QI (using one of the well-known

algorithms).
2: Compute minAss0(I) = {P ′

i ∩ Z[x] | i = 1, . . . , r}.
3: Compute a reduced Gröbner basis G of QI , consisting of monic polynomials. Let D be the set

of denominators occurring in the Gröbner basis computation, and T the set of denominators of
elements of G.

4: Try to compute the set S of prime factors of D.
5: while entries in D cannot be factored or |S| is too big do
6: Compute another reduced Gröbner basis with respect to some other monomial order, and let D′

be the set of denominators occurring in this computation.
7: Replace D by {gcd(d, d′) | d ∈ D, d′

∈ D′
}.

8: Try to compute the set S of prime factors of D.
9: end while

10: for p ∈ S do
11: if p divides an element of T or


G


% I then

12: Compute the minimal associated primes
P1, . . . ,Ps of I (using one of the well-known

algorithms).
13: Compute minAssp(I) = {ν−1

p

Pi | i ∈ {1, . . . , s} and ν−1
p

Pi ⊉ P ′ for all P ′
∈ minAss0(I)}.

14: end if
15: end for
16: return


q∈P∪{0} minAssq(I).

tries to factor arbitrary numbers and accepts any size of S. With this approach, for any ideal for which
a Gröbner basis over the rationals could be computed, the algorithm was able to compute a set S of
necessary primes.

Also note that lines 3–9 can be parallelized, as well as lines 10–15.

3. Examples

The Gröbner basis algorithm used to compute the necessary primes is Ginv (Blinkov and
Gerdt, 2008), an implementation of the involutive basis algorithm by Gerdt and Blinkov (Gerdt,
2005) computing Janet bases (see (Plesken and Robertz, 2005)), which has an option to collect all
denominators occurring in a Janet basis computation.

The first two examples are taken from the SymbolicData Project (Gräbe, 2010).

Example 8 (ZeroDim.example_54.xml). After the first run of the involutive basis algorithm over the
rationals, the biggest denominator is of size 1085, so the algorithm does not try to factor this number.
After the second run, there are 35 primes left, and after another two runs, this is reduced to 18 primes,
which are then tested using the criterion of Proposition 7, leaving only six primes. Apart from the
minimal associated primes which occur already in a calculation over the rationals, this ideal also has
a minimal associated prime ideal containing 2, and another one containing 3.

Example 9 (Gerdt-85_1.xml). There are two calculations needed over the rationals to reduce the
number of necessary primes from 60 to 13, and after the modular criterion we see that only seven
primes are necessary. There are 22 minimal associated primes, and 14 of these prime ideals contain
one of the prime numbers 2, 3, 5, or 7.

The next set of examples comes up in a run of the L3-U3-quotient algorithm (presented in a
forthcoming paper).

Example 10 (L3-U3-quotient Algorithm). The L3-U3-quotient algorithm finds all epimorphic images
of a finitely presented group which are isomorphic to PSL(3, q) or to PSU(3, q) simultaneously for
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Table 1
Time (in seconds) to compute the necessary primes, the minimal associated primes of the ideal, and the
Gröbner basis over Z of the ideal. The value ∞ means that the computation did not finish after 5 h, and
OOMmeans that the process tried to use more than 8 GB of memory.

Compute minAss(I) Gröbner basis over Z
Example Rational Modular Associated Ginv Macaulay2 Magma Singular

criterion criterion primes

Example 8 9.8 1.5 9.2 197.3 4.2 38.9 OOM
Example 9 0.6 0.1 3.2 5253.6 ∞ ∞ OOM
Example 10.1 35.9 12.4 3.2 15.8 52.4 29.5 ∞

Example 10.2 4.3 2.0 0.6 16.8 OOM 26.7 ∞

Example 10.3 7.8 6.3 2.6 24.5 OOM OOM ∞

Example 10.4 7.2 2.9 0.8 175.4 OOM 12873.1 ∞

Example 10.5 1.1 5.4 1.5 466.0 OOM OOM ∞

any q. We start with the group ⟨a, b | a2, b6, (ab)7, [a, b]8⟩, and during the computation we have to
compute the minimal associated primes of five ideals. The first one is an ideal in the ring R :=

Z[x1, x−1, x2, x−2, x1,2, x−1,2, x−2,1, x−2,−1, x[1,2]], with a grading of the variables given by deg(xi) = 2
and deg(xi,j) = 4 for i, j ∈ {−2, −1, 1, 2}, and deg(x[1,2]) = 8; the other four ideals are ideals in the
ring R[ζ ], with deg(ζ ) = 1 and the relation ζ 2

+ ζ + 1.
Each ideal has at least one minimal associated prime containing a prime number.
The ideals are referred to in Table 1 as Example 10.1 to Example 10.5.

The following times are measured.

1. The time to find a sufficient list of primes (Proposition 4, corresponding to lines 3–9 of Algorithm1)
using Ginv, listed in column ‘‘Rational criterion’’.

2. The time to reduce this list to a necessary list of primes (Proposition 7, corresponding to line 11 of
Algorithm 1) using Magma, listed in column ‘‘Modular criterion’’.

3. The time to compute the minimal associated primes (Proposition 1, corresponding to lines 2, 12,
and 13 of Algorithm 1) using Magma, listed in column ‘‘Associated primes’’.

For comparison, the time to compute a Gröbner basis or Janet basis overZ in various computer algebra
systems is given. All computations were done on a Quad-Core AMD Opteron Processor 8356. Each
process was given 5 h CPU time and 8 GB of RAM. The timings are recorded in Table 1. All source files
for these examples are available from Jambor (2010). The program versions used are Singular 3-1-1,
Magma V2.16-12, and Macaulay2 1.2. For Ginv, a current developer version was used, which is also
available from Jambor (2010).

4. Another approach with fewer primes

The set S generated by the prime divisors of denominators occurring during Buchberger’s algo-
rithm is usually largely redundant.What are really necessary for the argument in Proposition 4 are the
denominators of a representation of the Gröbner basis elements g in terms of the original ideal gen-
erators f1, . . . , fr , that is, the si in some representation g =

∑r
i=1

zi
si
fi (see the proof of Proposition 4).

As pointed out by one of the referees, the set generated by the prime divisors of those si can be con-
siderably smaller than the set S considered in this paper.

While this is true, this approach is usually not an efficient alternative. There are mainly two
problems. First, the standard approach to compute these representations is to do calculations in a
certain submodule of Q[x]r+1 with a position over term order, so there is an additional cost for the
polynomial arithmetic, which has to be done for r + 1 components instead of one component, which
leads to increased time consumption. Second, while the polynomial generators fi and the Gröbner
basis elements are often sparse polynomials, the cofactors zi

si
tend to be dense polynomials, which

leads to increased memory consumption.
On the other hand, the approach presented in this paper, that is, remembering the denominators

during the computation, is virtually cost free.
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There is a third problem with the standard approach to get the representations above. One is only
interested in the first entry of the r + 1 entries, but the Gröbner basis with the position over term
order will further reduce the elements where the first entry is zero. This is overcome in the Maple
package Janet and its C++ counterpart Ginv (see (Blinkov et al., 2003, Section 4)), where computations
are done in a submodule of Q[x]r+1 as well, but only the first entry is considered for reductions.

Of the seven examples above, only one computation with simultaneous construction of the
representations finished without exceeding 8 GB of memory (Example 8). And while in fact this
alternative approach leads to fewer primes to consider (there are 37 primes in this alternative
approach, while a Janet basis computation with the same monomial ordering, remembering only
the denominators, produces 262 primes), the tradeoff is not acceptable. Just this one Janet basis
computation takes 153.3 s with the alternative approach, while the approach presented in this paper
takes 0.2 s. In fact, the whole computation of the minimal associated primes as presented here takes
20.5 s, so it finishes long before even the first Janet basis computation with the alternative approach
in Q[x]r+1 finishes.

5. Conclusion

This paper presents a method to compute the prime numbers which can occur in associated prime
ideals of a given ideal I E Z[x] (see Section 2). In contrast to the known method, which relies on
a Gröbner basis calculation over Z, the new method relies entirely on a Gröbner basis calculation
over prime fields. Together with the methods of Fabiańska’s algorithm, this gives a new algorithm to
compute the minimal associated prime ideals of an ideal in Z[x], presented in Algorithm 1, which is
often faster than the old approach.

The examples in Section 3 show that, even though the Gröbner basis calculation over Z can
take a long time to finish, the computation of the minimal associated primes can be relatively fast.
Examples 8 and 9 show in particular that it can be important to compute Gröbner bases with respect
to different monomial orders to keep the Gröbner basis computations over finite fields to a minimum
(in Example 9, a second Gröbner basis calculation reduces the number of primes to consider from 60
to 13, thereby replacing 47 otherwise necessary Gröbner basis computations over finite fields by a
single Gröbner basis calculation over Q).

Of course, there are examples where this new approach is slower than Fabiańska’s method, for
instance, if the Gröbner basis computation is fast with respect to one monomial order, but slow
with respect to others (at present, the new monomial order is selected randomly). Furthermore, the
Gröbner basis calculation overZmight be fast: in Example 10.1 it takes 15.8 s to compute thenecessary
primes by a Janet basis calculation over Z, and about three times as long (35.9 + 12.4 = 48.3 s) to
compute the necessary primes via the rational and the modular criterion. However, in applications,
in particular the L3-U3-quotient algorithm, this new approach gives an overall speedup.
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