5 research outputs found

    Separation of gases using ultra-thin porous layers of monodisperse nanoparticles

    Get PDF
    The present paper deals with a numerical solution of the two-dimensional problem of helium and methane molecules motion through an ultra-thin layer of a porous material composed of spherical nanoparticles of the same size. The interaction potential “nanoparticle-molecule” is obtained by integrating paired molecular interactions over the nanoparticle volume. Using the method of classical molecular dynamics, permeability of a layer having the size of about 10−8 m is studied

    Separation of gases using ultra-thin porous layers of monodisperse nanoparticles

    No full text
    The present paper deals with a numerical solution of the two-dimensional problem of helium and methane molecules motion through an ultra-thin layer of a porous material composed of spherical nanoparticles of the same size. The interaction potential “nanoparticle-molecule” is obtained by integrating paired molecular interactions over the nanoparticle volume. Using the method of classical molecular dynamics, permeability of a layer having the size of about 10−8 m is studied

    Separation of Gases Using Ultra-Thin Porous Layers of Monodisperse Nanoparticles

    No full text
    The present paper deals with a numerical solution of the two-dimensional problem of helium and methane molecules motion through an ultra-thin layer of a porous material composed of spherical nanoparticles of the same size. The interaction potential “nanoparticle-molecule” is obtained by integrating paired molecular interactions over the nanoparticle volume. Using the method of classical molecular dynamics, permeability of a layer having the size of about 10−8 m is studied

    Low-temperature separation of helium-helion mixture

    No full text
    The research is devoted to the problem of designing materials with an adjustable property of permeability. The obtained tool for property regulation allows achieving hyper-selectivity in relation to separation of helium isotope mixtures, as well as some other gas mixtures. The reasearch is theoretical in nature; however, it suggests a clear direction of activity for experimenters. The result obtained is valid for ultrathin barriers of any form. As a result, a new exact solution of the Schrödinger equation of wave dynamics, which is valid for the case of two-barrier systems, is found. This solution allows for comprehensive consideration of the process of wave passage through a barrier and identification of the causes leading to super-permeability of individual components

    Separation of Gases Using Ultra-Thin Porous Layers of Monodisperse Nanoparticles

    No full text
    The present paper deals with a numerical solution of the two-dimensional problem of helium and methane molecules motion through an ultra-thin layer of a porous material composed of spherical nanoparticles of the same size. The interaction potential “nanoparticle-molecule” is obtained by integrating paired molecular interactions over the nanoparticle volume. Using the method of classical molecular dynamics, permeability of a layer having the size of about 10−8 m is studied
    corecore