61 research outputs found

    Liberal theory and Islam: (re)imagining the interaction of religion, law, state and society in Muslim contexts

    Get PDF
    Within the global phenomenon of the (re)emergence of religion into issues of public debate, one of the most salient issues confronting contemporary Muslim societies is how to relate the legal and political heritage that developed in pre-modern Islamic polities to the political order of the modern states in which Muslims now live. This study seeks to develop a framework for addressing this issue by drawing upon two sources. The first is an interpretative understanding of the history of Muslim contexts emphasising, in particular, the diversity of views about what Islam mandates that have always been a part of Muslim experience and the distinction between political and religio-legal authority that developed in practice in these environments. The second source is a variety of contemporary liberal theory which this study develops and calls ‘justice as discourse’. The central argument is that liberal theory, and justice as discourse in particular, though it may have emerged in a different social and cultural milieu, can be normatively useful in Muslim contexts for relating, religion, law, state and society. It is argued first, that Muslim contexts are facing issues similar to those out of which liberal theory emerged. Additionally, it is argued that both Muslim contexts and liberal theory are dynamic and continually developing and that this shared dynamism means that there may be space for convergence of the two. Just as Muslim contexts have developed historically (and continue to develop today) the same is the case with the requisites of liberal theory and this may allow for liberal choices to be made in a manner that is not a renunciation of Muslim heritage

    Effect of Chemical Treatments for Cellulosic Plants on Some Macro Minerals

    Get PDF
    We treated barley straw with sodium hydroxide, ammonium hydroxide and urea to improve the nutrition efficiency. Some macro minerals “calcium, potassium and phosphor were measured. No effect for chemical treatments on Ca, K and P (%). Potassium content (%) was 0.033, 0.038, 0.042 and 0.035 for untreated straw or treated with NaOH, NH4OH and Urea. Phosphor content (%) was 0.6, 0.65, 0.89 and 0.82, while calcium (%) was 0.90, 0.95, 0.88 and 0.93 for untreated straw or treated with NaOH, NH4OH and Urea respectively. In conclusion: No effects for treated straw with NaOH, NH4OH or urea on macro minerals like Ca, K and P and in respectively for other minerals. Key word: Chemical treated straw, calcium, potassium, phosphor, macro elements

    Triethyl orthoformate covalently cross-linked chitosan-(poly vinyl) alcohol based biodegradable scaffolds with heparin-binding ability for promoting neovascularisation

    Get PDF
    There is a need to develop pro-angiogenic biomaterials to promote wound healing and to assist in regenerative medicine. To this end, various growth factors have been exploited which have the potential to promote angiogenesis. However, these are generally expensive and labile which limits their effectiveness. An alternative approach is to immobilize heparin onto biocompatible degradable hydrogels. The heparin in turn will then bind endogenous proangiogenic growth factors to induce formation of new blood vessels.In this study, we continue our development of hydrogels for wound healing purposes by exploring covalently cross-linking chitosan and polyvinyl alcohol hydrogels using triethyl orthoformate. Two concentrations of triethyl orthoformate (4 and 16%) were compared for their effects on the structure of hydrogels - their swelling, pore size, and rate of degradation and for their ability to support the growth of cells and for their heparin-binding capacity and their effects on angiogenesis in a chick chorioallantoic membrane assay.Hydrogels formed with 4 or 16% both triethyl orthoformate cross-linker were equally cyto-compatible. Hydrogels formed with 4% triethyl orthoformate absorbed slightly more water than those made with 16% triethyl orthoformate and broke down slightly faster than non-cross-linked hydrogels. When soaked in heparin the hydrogel formed with 16% triethyl orthoformate showed more blood vessel formation in the CAM assay than that formed with 4% triethyl orthoformate

    Identification of anti-cancer potential of doxazocin: Loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer

    Get PDF
    In this study, an effective, biocompatible and biodegradable co-polymer comprising of chitosan (CS) and polyvinyl alcohol (PVA) hydrogels, chemically crosslinked and impregnated with doxazocin, is reported. The chemical structural properties of the hydrogels were evaluated by Fourier Transform Infrared spectroscopy (FTIR) and physical properties were analysed by scanning electron microscopy (SEM). The swelling behaviour is an important parameter for drug release mechanism and was investigated to find out the solution absorption capacity of the synthesized hydrogels. MTT assay revealed that doxazocin loaded hydrogels significantly hindered the cell viability. Flow cytometry analysis was performed to analyse the effect of 8CLH and 4CLH on regulation of cell cycle. Moreover, in vivo anti-cancer potential of synthesized hydrogels was assessed by CAM Assay. Results displayed that 8CLH with 1 mg/ml of doxazocin had prominently decreased the angiogenesis and significantly increased the number of cells in G1 phase of cell cycle. These results declared that 8CLH will be a good addition among hydrogels used for treatment of cancer by onsite delivery of drug

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Having faith in our schools: Struggling with definitions of religion

    No full text
    Law, Religious Freedoms and Education in Europe69-8

    Influence of process parameters in removing wastewater impurities via progressive freeze crystallization

    No full text
    Purpose: The research aims to investigate the effect of the process parameter of progressive freeze concentration to eliminate tricholorophenol in wastewater. Design/methodology/approach: A stainless steel crystallizer was used throughout the experiment. Simulated wastewater containing trichlorophenol (TCP) was used as a sample solution, and ethylene glycol was utilized as a coolant to induce the heat transfer at a very low temperature. Progressive freeze crystallization (PFC) is an approach to purify water by implementing the fundamental concept of difference freezing point. In short, the PFC system produces ice-crystal layer by layer on a cooled surface until it forms a large and single-crystal block, leaving the impurities in the mother liquor. Findings: It is established that operating time and initial concentration influence the PFC performance. The findings show that the intermediate operating time gave the highest removal of TCP in wastewater. Meanwhile, for the effect of initial concentration, it was discovered that the lowest initial concentration resulted in the best TCP reduction with high purity of the water was obtained. Research limitations/implications: The results can be complemented by studies of the effect of coolant temperature and solution movement. These two parameters are believed to potentially improve the PFC performance. Practical implications: The findings can be implemented to select the optimal operating condition to treat the wastewater, especially in the industrial area with hazardous TCP. Originality/value: The obtained results testify to the predominant influence of operating time and initial concentration on the PFC performance in eliminating TCP in wastewater

    Biological behavior of bioactive glasses and their composites

    No full text
    Bioactive glasses (BGs) as third generation biomaterials have the ability to form an interfacial bonding more rapidly than other bioceramics between implant and host tissues in defect treatment. Therefore, BGs have shown great applications in the field of bone tissue engineering, dental materials, skin and other tissue regeneration. This review is based on inorganic and organic BG composites being used in bone tissue engineering and summarizes current developments in improving the biological behavior of BGs and their composites. A main focus was given to highlight the role of BGs and their composites in osteogenic differentiation and angiogenesis, followed by their cytotoxicity, protein adsorption ability and antibacterial properties. BGs were found to enhance the cell proliferation and cell attachment without any toxic effects with a significant increase in metabolic activity and possess osteogenic properties. Organic and inorganic dopants have been used to improve their cytocompatibility, osteoconductivity and promote stem cell differentiation towards the osteogenic lineage. BGs have also been used as graft materials because of their significant role in angiogenesis, as they stimulate relevant cells (i.e. fibroblasts, osteoblasts and endothelial cells) to release angiogenic growth factors. They show good protein adsorption because they act as templates for the adsorption of proteins which in turn depends upon surface properties. Antibacterial effects were also observed in BGs as a result of the high aqueous pH value in body fluids due to the presence of alkaline ions. There has been significant research work performed on silica-based bioactive glasses but not much literature can be found on phosphate- and borate-based bioactive glasses, which have good solubility and degradation, respectively. © The Royal Society of Chemistry 2016

    A case of fungus ball type pansinusitis caused by Schizophillum commune

    No full text
    Schizophillum commune has been increasingly reported from allergic bronchopulmonary mycosis (ABPM) as well as fungus ball, brain abscess and several cases of maxillary or allergic fungal sinusitis. In the present study, we reported a case of fungus ball type pansinusitis from a 32-year-old woman in Iran. According to computed tomography (CT) scan, fungus ball type pan-sinusitis was likely to be the first diagnosis. Mycological examination revealed hyaline hyphae with small projection and also clamp connection structures on PDA medium. To identify the obtained isolate properly, molecular analysis of the internal transcribed spacer region was performed and indicated that the causing agent of the infection is surely Schizophillum commune. The patient completely recovered after surgical endoscopic operation and consequent post-operation MRI revealed clearance of sinuses. © 2012 International Society for Human and Animal Mycology

    (Hydroxypropyl)methylcellulose mediated synthesis of highly porous composite scaffolds for trabecular bone repair applications

    No full text
    This article presents an (hydroxypropyl)methylcellulose (HPMC) mediated synthesis of highly porous scaffolds containing nanocrystalline hydroxyapatite (n-HAp) and chitosan (CS) as major inorganic and organic phases, respectively. A mixture of n-HAp, CS, and HPMC is homogenized and freeze-dried to yield n-HAp/CS/HPMC composite scaffolds closely emulating trabecular bone in density (0.02 g cm-3) and porosity (89%). SEM images substantiate the porous structure of the scaffolds (pore size: 100-300 μm). The mechanical analysis reveal excellent compressive strength of the porous n-HAp/CS/HPMC scaffold (9.65 MPa) that is also comparable with human trabecular bone. The in vitro bioactivity and degradability of the porous scaffolds are investigated in tris-HCl-buffered synthetic body fluid (SBF) and phosphate buffer solution (PBS), respectively. The results indicate a rapid increase in scaffold mass due to apatite-like deposition and good resorbability. The SEM images of SBF soaked samples demonstrate apatite-like deposition on the surface of scaffolds with Ca/P ratio of 1.63 after 7 days of soaking in SBF. These results suggest that porous n-HAp/CS/HPMC scaffolds, due to their structural similarity, mechanical and in vitro biological properties, can become useful alternatives for trabecular bone regeneration and repair. © 2015 by American Scientific Publishers
    corecore