49 research outputs found

    Combination of an Enzymatically Hydrolyzed Yeast and Yeast Culture with a Direct-fed Microbial in the Feeds of Broiler Chickens

    Get PDF
    A balance trial experiment was carried out to evaluate the potential relationship between an enzymatically hydrolyzed yeast (EHY) and yeast culture combined with a live Bacillus subtilis (Bs) on the productive parameters, ileal digestibility, retention of nutrient and energy and villus morphology in broilers. Seventy two 28 d old, Ross B308 male broilers were assigned to a factorial combination of 2 levels of EHY (0 and 1 kg/ton of feed) and 2 levels of Bs (0 and 125 g/ton of feed). The experiment lasted 2 weeks. Several treatment interactions were observed. EHY-fed broilers showed the lowest feed intake and feed conversion ratio whereas Bs-fed broilers showed the highest feed intake and intermediate feed conversion ratio (EHY and BS interaction, p<0.05). Also, EHY-fed broilers had greater ileal digestibility of dry matter (EHY and BS interaction, p<0.01) and energy (EHY and BS interaction, p<0.05) but these responses were counterbalanced by the combination of EHY and Bs. The thickness of the mucosa was similar between the control and EHY-fed broilers, but was lowest when Bs was added alone (EHY and BS interaction, p<0.01). The thickness of the villus was greater in EHY plus Bs-fed broilers, intermediate for the control and lower for Bs or EHY-fed broilers (EHY and BS interaction, p<0.05). The area of the villus was greater in the control and EHY plus Bs-fed broilers (EHY and BS interaction, p<0.05). In addition, EHY-fed broilers showed greater breast yield and nitrogen retention (p<0.01) and ashes digestibility (p<0.05). On the other hand, Bs-fed broilers had greater carcass and breast weight, nitrogen retention, energy excretion and villus height (p<0.05). In summary, EHY and Bs enhanced some growth, carcass and nutrient retention responses, but did not show any synergic relationship in these responses. Opposite to this, the results suggest that the positive effect of EHY on the feed conversion and digestibility of nutrients were counterbalanced by the addition of Bs

    Quality compared to quantity of life in laryngeal cancer: A time trade-off study

    No full text
    Background - The purpose of this study was to use time trade-off to assess the factors influencing patients' decisions in advanced laryngeal cancer. Time trade-off is a well-established method of assessing how individuals value a particular health state. Methods - We developed vignettes depicting life after chemoradiotherapy or laryngectomy. One hundred fourteen participants ranked them, assigned utility values, and rated the importance of survival on treatment choice. Results - Chemoradiotherapy was preferred by 62% and laryngectomy by 38%. Chemoradiotherapy optimal outcome had the highest mean utility value (0.64) followed by total laryngectomy optimal outcome (0.56). Total laryngectomy poor outcome (0.33) was equivalent to chemoradiotherapy poor outcome (0.32).The average survival advantage required for a participant to change their preferred choice was 2.1 years. Conclusion - The functional treatment outcome had a greater effect on health state utility values than treatment modality. In many individuals, larynx conservation may not be the primary consideration in treatment preference

    Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes

    No full text
    ABSTRACT: This study was aimed to investigate the effects of yeast polysaccharides (YPS) on growth performance, intestinal health, and aflatoxin metabolism in livers of broilers fed diets naturally contaminated with mixed mycotoxins (MYCO). A total of 480 one-day-old Arbor Acre male broilers were randomly allocated into a 2 × 3 factorial arrangement of treatments (8 replicates with 10 birds per replicate) for 6 wk to assess the effects of 3 levels of YPS (0, 1, or 2 g/kg) on the broilers fed diets contaminated with or without MYCO (95 μg/kg aflatoxin B1, 1.5 mg/kg deoxynivalenol, and 490 μg/kg zearalenone). Results showed that mycotoxins contaminated diets led to significant increments in serum malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, mRNA expressions of TLR4 and 4EBP1 associated with oxidative stress, mRNA expressions of CYP1A1, CYP1A2, CYP2A6, and CYP3A4 associated with hepatic phase Ⅰ metabolizing enzymes, mRNA expressions of p53 associated with hepatic mitochondrial apoptosis, and AFB1 residues in the liver (P < 0.05); meanwhile dietary MYCO decreased the jejunal villus height (VH), villus height/crypt depth (VH/CD), the activity of serum total antioxidant capacity (T-AOC), mRNA expressions of jejunal HIF-1α, HMOX, and XDH associated with oxidative stress, mRNA expressions of jejunal CLDN1, ZO1, and ZO2, and mRNA expression of GST associated with hepatic phase Ⅱ metabolizing enzymes of broilers (P < 0.05). Notably, the adverse effects induced by MYCO on broilers were mitigated by supplementation with YPS. Dietary YPS supplementation reduced the concentrations of serum MDA and 8-OHdG, jejunal CD, mRNA expression of jejunal TLR2, and 4EBP1, hepatic CYP1A2, and p53, and the AFB1 residues in the liver (P < 0.05), and elevated the serum T-AOC and SOD, jejunal VH, and VH/CD, and mRNA expression of jejunal XDH, hepatic GST of broilers (P < 0.05). There were significant interactions between MYCO and YPS levels on the growth performance (BW, ADFI, ADG, and F/G) at d 1 to 21, d 22 to 42, and d 1 to 42, serum GSH-Px activity, and mRNA expression of jejunal CLDN2 and hepatic ras of broilers (P < 0.05). In contrast with MYCO group, the addition of YPS increased BW, ADFI, and ADG, the serum GSH-Px activity (14.31%–46.92%), mRNA levels of jejunal CLDN2 (94.39%–103.02%), decreased F/G, and mRNA levels of hepatic ras (57.83%–63.62%) of broilers (P < 0.05). In conclusion, dietary supplements with YPS protected broilers from mixed mycotoxins toxicities meanwhile keeping normal performance of broilers, presumably via reducing intestinal oxidative stress, protecting intestinal structural integrity, and improving hepatic metabolic enzymes to minimize the AFB1 residue in the liver and enhance the performance of broilers

    Effect of dietary Saccharomyces-derived prebiotic refined functional carbohydrates as antibiotic alternative on growth performance and intestinal health of broiler chickens reared in a commercial farm

    No full text
    ABSTRACT: The search for effective in-feed antibiotic alternative is growing due to the global trend to reduce or ban the utilization of antibiotics as growth promotors in poultry diets. This study was processed to assess the effect of dietary refined functional carbohydrates (RFCs) replacing antibiotic growth promoters (AGP) on growth performance, intestinal morphologic structure and microbiota, as well as intestinal immune function and barrier function of broilers reared on a commercial broilers farm. Trials contained 3 treatments with 4 replicate broiler houses, with about 25,000 birds each room. The treatments were control group (CON), RFCs group (CON + 100 mg/kg RFCs), and AGP group (CON + 50 mg/kg bacitracin methylene disalicylate (BMD), respectively. Results showed that RFCs and AGP group significantly increased (P < 0.05) average daily gain (ADG) during d 22 to 45 in contrast to control. Compared with the control and AGP-treated groups, feeding RFCs increased (P < 0.05) jejunal villus height to crypt depth ratio. AGP addition reduced (P < 0.05) the jejunal villi surface area compared to broilers fed control and RFC supplemented diets. Supplementation of RFCs promoted (P < 0.05) the growth of Lactobacillus but inhibited Escherichia coli and Salmonella proliferation compared with the control group. Inclusion of RFCs and BMD enhanced (P < 0.05) antibody titers against avian influenza virus H9 compared with control. RFCs and AGP both down-regulated (P < 0.05) intestinal TLR4 mRNA levels, whereas RFCs tended to up-regulate (P = 0.05) IFN-γ gene expression compared to control. Expression of intestinal tight junction genes was not affected by either AGP or RFCs supplementation. Based on above observation, we suggested that RFCs could replace in-feed antibiotic BMD in broiler diets for reducing intestinal pathogenic bacteria and modulating immunity of broilers
    corecore